Mostrar el registro sencillo del ítem
dc.contributor.author
Williamson, Federico
dc.contributor.author
Naciff, Nadhir
dc.contributor.author
Catania, Carlos Adrian
dc.contributor.author
Dos Santos Mendez, Gonzalo Joaquín
dc.contributor.author
Amigo, Nicolás
dc.contributor.author
Bringa, Eduardo Marcial
dc.date.available
2024-11-11T10:46:07Z
dc.date.issued
2024-11
dc.identifier.citation
Williamson, Federico; Naciff, Nadhir; Catania, Carlos Adrian; Dos Santos Mendez, Gonzalo Joaquín; Amigo, Nicolás; et al.; Machine learning-based prediction of FeNi nanoparticle magnetization; Elsevier; Journal of Materials Research and Technology; 33; 11-2024; 5263-5276
dc.identifier.issn
2238-7854
dc.identifier.uri
http://hdl.handle.net/11336/247746
dc.description.abstract
This work proposes a computationally efficient approach for estimating the magnetization of Fe0.7Ni0.3 body-centered cubic (bcc) nanoparticles (NPs) at room temperature using machine-learning algorithms, in terms of the average magnetic moment per atom, ⟨μ⟩. The magnetization data of isolated NPs were generated using atomistic spin dynamics (ASD) simulations for various nanoparticle shapes (cubes, spheres, octahedra, cones, cylinders, ellipsoids, flakes, and pyramids, with or without nanovoids) and FeNi distributions (random, core-shell, onion, sandwich, and Janus with different boundary planes). More than 1600 NPs were created and split into training and testing sets (70%–30% split), with features including the number of Ni/Fe surface and core atoms, potential energy distributions, pair correlation functions, and coordination distributions. Several machine-learning algorithms, including Random Forest (RF), Elastic Net, Support Vector Regression (SVR), and Gradient Boosting Regression (CatBoost), were applied to predict the average magnetic moment per atom of these NPs. The best-performing models, CatBoost and RF, achieved R2 scores of up to 0.86, demonstrating their accuracy in predicting NP magnetization. Feature analysis highlighted the significance of the interface between Fe and Ni clusters, Fe–Fe interactions, and the presence of Fe on the surface as critical contributors to overall magnetization. Random alloy spherical NPs without porosity exhibited the highest ⟨μ⟩ ∼ 1.6μB due to reduced Ni–Ni interactions. Applying machine-learning methods significantly reduces computational time and memory requirements compared to traditional ASD simulations. This allows for rapid prediction of NPs with desired magnetic properties, making them suitable for various technological applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Magnetization
dc.subject
Nanoparticle
dc.subject
Machine learning
dc.subject
Atomistic spin dynamics
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Machine learning-based prediction of FeNi nanoparticle magnetization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-11T09:25:29Z
dc.journal.volume
33
dc.journal.pagination
5263-5276
dc.journal.pais
Brasil
dc.description.fil
Fil: Williamson, Federico. Universidad Nacional de Cuyo; Argentina
dc.description.fil
Fil: Naciff, Nadhir. Universidad de Mendoza. Facultad de Ingenieria; Argentina
dc.description.fil
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Dos Santos Mendez, Gonzalo Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
dc.description.fil
Fil: Amigo, Nicolás. Universidad Tecnologica Metropolitana (utem);
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.journal.title
Journal of Materials Research and Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2238785424024128
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmrt.2024.10.142
Archivos asociados