Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Machine learning-based prediction of FeNi nanoparticle magnetization

Williamson, Federico; Naciff, Nadhir; Catania, Carlos AdrianIcon ; Dos Santos Mendez, Gonzalo JoaquínIcon ; Amigo, Nicolás; Bringa, Eduardo MarcialIcon
Fecha de publicación: 11/2024
Editorial: Elsevier
Revista: Journal of Materials Research and Technology
ISSN: 2238-7854
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

This work proposes a computationally efficient approach for estimating the magnetization of Fe0.7Ni0.3 body-centered cubic (bcc) nanoparticles (NPs) at room temperature using machine-learning algorithms, in terms of the average magnetic moment per atom, ⟨μ⟩. The magnetization data of isolated NPs were generated using atomistic spin dynamics (ASD) simulations for various nanoparticle shapes (cubes, spheres, octahedra, cones, cylinders, ellipsoids, flakes, and pyramids, with or without nanovoids) and FeNi distributions (random, core-shell, onion, sandwich, and Janus with different boundary planes). More than 1600 NPs were created and split into training and testing sets (70%–30% split), with features including the number of Ni/Fe surface and core atoms, potential energy distributions, pair correlation functions, and coordination distributions. Several machine-learning algorithms, including Random Forest (RF), Elastic Net, Support Vector Regression (SVR), and Gradient Boosting Regression (CatBoost), were applied to predict the average magnetic moment per atom of these NPs. The best-performing models, CatBoost and RF, achieved R2 scores of up to 0.86, demonstrating their accuracy in predicting NP magnetization. Feature analysis highlighted the significance of the interface between Fe and Ni clusters, Fe–Fe interactions, and the presence of Fe on the surface as critical contributors to overall magnetization. Random alloy spherical NPs without porosity exhibited the highest ⟨μ⟩ ∼ 1.6μB due to reduced Ni–Ni interactions. Applying machine-learning methods significantly reduces computational time and memory requirements compared to traditional ASD simulations. This allows for rapid prediction of NPs with desired magnetic properties, making them suitable for various technological applications.
Palabras clave: Magnetization , Nanoparticle , Machine learning , Atomistic spin dynamics
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.824Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/247746
URL: https://linkinghub.elsevier.com/retrieve/pii/S2238785424024128
DOI: http://dx.doi.org/10.1016/j.jmrt.2024.10.142
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Williamson, Federico; Naciff, Nadhir; Catania, Carlos Adrian; Dos Santos Mendez, Gonzalo Joaquín; Amigo, Nicolás; et al.; Machine learning-based prediction of FeNi nanoparticle magnetization; Elsevier; Journal of Materials Research and Technology; 33; 11-2024; 5263-5276
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES