Mostrar el registro sencillo del ítem
dc.contributor.author
Chiumiento, Eduardo Hernan
dc.contributor.author
Massey, Pedro Gustavo
dc.date.available
2024-10-10T10:12:36Z
dc.date.issued
2024-05
dc.identifier.citation
Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals; De Gruyter; Forum Mathematicum; 5-2024; 1-27
dc.identifier.issn
0933-7741
dc.identifier.uri
http://hdl.handle.net/11336/245791
dc.description.abstract
We study the Moore-Penrose inverse of perturbations by a symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore-Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach-Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore-Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MOORE-PENROSE
dc.subject
POLAR DECOMPOSITION
dc.subject
ESSENTIAL CODIMENSION
dc.subject
SYMMETRICALLY-NORMED IDEAL
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-10-09T13:21:47Z
dc.journal.pagination
1-27
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Forum Mathematicum
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/forum-2024-0010
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/forum-2024-0010/html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2312.02693
Archivos asociados