Mostrar el registro sencillo del ítem

dc.contributor.author
Chiumiento, Eduardo Hernan  
dc.contributor.author
Massey, Pedro Gustavo  
dc.date.available
2024-10-10T10:12:36Z  
dc.date.issued
2024-05  
dc.identifier.citation
Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals; De Gruyter; Forum Mathematicum; 5-2024; 1-27  
dc.identifier.issn
0933-7741  
dc.identifier.uri
http://hdl.handle.net/11336/245791  
dc.description.abstract
We study the Moore-Penrose inverse of perturbations by a symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore-Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach-Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore-Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MOORE-PENROSE  
dc.subject
POLAR DECOMPOSITION  
dc.subject
ESSENTIAL CODIMENSION  
dc.subject
SYMMETRICALLY-NORMED IDEAL  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-10-09T13:21:47Z  
dc.journal.pagination
1-27  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Forum Mathematicum  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/forum-2024-0010  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/forum-2024-0010/html  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2312.02693