Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals

Chiumiento, Eduardo HernanIcon ; Massey, Pedro GustavoIcon
Fecha de publicación: 05/2024
Editorial: De Gruyter
Revista: Forum Mathematicum
ISSN: 0933-7741
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We study the Moore-Penrose inverse of perturbations by a symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore-Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach-Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore-Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.
Palabras clave: MOORE-PENROSE , POLAR DECOMPOSITION , ESSENTIAL CODIMENSION , SYMMETRICALLY-NORMED IDEAL
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 376.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/245791
DOI: http://dx.doi.org/10.1515/forum-2024-0010
URL: https://www.degruyter.com/document/doi/10.1515/forum-2024-0010/html
URL: https://arxiv.org/abs/2312.02693
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals; De Gruyter; Forum Mathematicum; 5-2024; 1-27
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES