Mostrar el registro sencillo del ítem
dc.contributor.author
Macas Ordóñez, Beatriz del Cisne
dc.contributor.author
Garrigós, Javier
dc.contributor.author
Martínez, José Javier
dc.contributor.author
Ferrandez, Jose Manuel
dc.contributor.author
Bonomini, Maria Paula
dc.date.available
2024-10-10T10:01:48Z
dc.date.issued
2024
dc.identifier.citation
Strict left bundle branch block diagnose through explainable artificial intelligence; 10th International Work-Conference on the Interplay Between Natural and Artificial Computation; Algarve; Portugal; 2024; 504-510
dc.identifier.isbn
978-3-031-61136-0
dc.identifier.uri
http://hdl.handle.net/11336/245789
dc.description.abstract
This study explores the use of SHapley Additive exPlanations (SHAP) values, a machine learning technique, to validate and refine electrocardiographic criteria for strict Left Bundle Branch Block (LBBB). The research utilizes a 1D convolutional neural network (CNN) model to analyze a database of heart failure patients, including those with strict LBBB, non-strict LBBB, no LBBB, and a healthy control group. The model’s performance was evaluated using five classification schemes, with an accuracy exceeding 81% in all cases. The study found that lead V3 emerged as one of the most valuable leads in the classification task across all proposed combinations, a surprising result given its lack of prominence in clinical LBBB diagnosis. This finding suggests that the link between V3 and LBBB, unexplored until now, warrants further investigation. The study concludes that the integration of SHAP values with traditional electrocardiographic analysis can enhance clinical decision-making and optimize patient care in the context of LBBB.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
LBBB DIAGNOSIS
dc.subject
CNN1D
dc.subject
SHAP VALUES
dc.subject.classification
Otras Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Strict left bundle branch block diagnose through explainable artificial intelligence
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2024-10-09T12:57:42Z
dc.journal.pagination
504-510
dc.journal.pais
España
dc.journal.ciudad
Cartagena
dc.description.fil
Fil: Macas Ordóñez, Beatriz del Cisne. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Garrigós, Javier. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Martínez, José Javier. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Ferrandez, Jose Manuel. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-031-61137-7_47
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-61137-7_47
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
10th International Work-Conference on the Interplay Between Natural and Artificial Computation
dc.date.evento
2024-06-04
dc.description.ciudadEvento
Algarve
dc.description.paisEvento
Portugal
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Universidad Politécnica de Cartagena
dc.source.libro
Bioinspired Systems for Translational Applications: From Robotics to Social Engineering
dc.date.eventoHasta
2024-06-07
dc.type
Congreso
Archivos asociados