Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Strict left bundle branch block diagnose through explainable artificial intelligence

Macas Ordóñez, Beatriz del CisneIcon ; Garrigós, Javier; Martínez, José Javier; Ferrandez, Jose Manuel; Bonomini, Maria PaulaIcon
Tipo del evento: Congreso
Nombre del evento: 10th International Work-Conference on the Interplay Between Natural and Artificial Computation
Fecha del evento: 04/06/2024
Institución Organizadora: Universidad Politécnica de Cartagena;
Título del Libro: Bioinspired Systems for Translational Applications: From Robotics to Social Engineering
Editorial: Springer
ISBN: 978-3-031-61136-0
Idioma: Inglés
Clasificación temática:
Otras Ingeniería Médica

Resumen

This study explores the use of SHapley Additive exPlanations (SHAP) values, a machine learning technique, to validate and refine electrocardiographic criteria for strict Left Bundle Branch Block (LBBB). The research utilizes a 1D convolutional neural network (CNN) model to analyze a database of heart failure patients, including those with strict LBBB, non-strict LBBB, no LBBB, and a healthy control group. The model’s performance was evaluated using five classification schemes, with an accuracy exceeding 81% in all cases. The study found that lead V3 emerged as one of the most valuable leads in the classification task across all proposed combinations, a surprising result given its lack of prominence in clinical LBBB diagnosis. This finding suggests that the link between V3 and LBBB, unexplored until now, warrants further investigation. The study concludes that the integration of SHAP values with traditional electrocardiographic analysis can enhance clinical decision-making and optimize patient care in the context of LBBB.
Palabras clave: LBBB DIAGNOSIS , CNN1D , SHAP VALUES
Ver el registro completo
 
Archivos asociados
Tamaño: 476.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/245789
DOI: http://dx.doi.org/10.1007/978-3-031-61137-7_47
URL: https://link.springer.com/chapter/10.1007/978-3-031-61137-7_47
Colecciones
Eventos(IAM)
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Strict left bundle branch block diagnose through explainable artificial intelligence; 10th International Work-Conference on the Interplay Between Natural and Artificial Computation; Algarve; Portugal; 2024; 504-510
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES