Mostrar el registro sencillo del ítem
dc.contributor.author
Cristaldi, Mariano Daniel
dc.contributor.author
Grau, Ricardo José Antonio
dc.contributor.author
Martínez, Ernesto Carlos
dc.date.available
2017-09-18T20:18:32Z
dc.date.issued
2009-05
dc.identifier.citation
Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-34
dc.identifier.issn
1934-2659
dc.identifier.uri
http://hdl.handle.net/11336/24526
dc.description.abstract
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Modeling
dc.subject
Optimization
dc.subject
Biotechnology
dc.subject
Experimental Design
dc.subject
Dynamic Experiments
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-09-13T16:09:28Z
dc.journal.volume
4
dc.journal.number
2
dc.journal.pagination
6-34
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Chemical Product and Process Modeling
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2202/1934-2659.1298
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/cppm.2009.4.2/cppm.2009.4.2.1298/cppm.2009.4.2.1298.xml
Archivos asociados