Mostrar el registro sencillo del ítem

dc.contributor.author
Cristaldi, Mariano Daniel  
dc.contributor.author
Grau, Ricardo José Antonio  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2017-09-18T20:18:32Z  
dc.date.issued
2009-05  
dc.identifier.citation
Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-34  
dc.identifier.issn
1934-2659  
dc.identifier.uri
http://hdl.handle.net/11336/24526  
dc.description.abstract
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Modeling  
dc.subject
Optimization  
dc.subject
Biotechnology  
dc.subject
Experimental Design  
dc.subject
Dynamic Experiments  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-13T16:09:28Z  
dc.journal.volume
4  
dc.journal.number
2  
dc.journal.pagination
6-34  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Chemical Product and Process Modeling  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2202/1934-2659.1298  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/cppm.2009.4.2/cppm.2009.4.2.1298/cppm.2009.4.2.1298.xml