Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses

Cristaldi, Mariano DanielIcon ; Grau, Ricardo José AntonioIcon ; Martínez, Ernesto CarlosIcon
Fecha de publicación: 05/2009
Editorial: De Gruyter
Revista: Chemical Product and Process Modeling
ISSN: 1934-2659
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.
Palabras clave: Modeling , Optimization , Biotechnology , Experimental Design , Dynamic Experiments
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 475.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/24526
DOI: http://dx.doi.org/10.2202/1934-2659.1298
URL: https://www.degruyter.com/view/j/cppm.2009.4.2/cppm.2009.4.2.1298/cppm.2009.4.2.
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-34
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES