Mostrar el registro sencillo del ítem

dc.contributor.author
Molter, Ursula Maria  
dc.contributor.author
Zuberman, Leandro  
dc.date.available
2024-09-27T15:53:34Z  
dc.date.issued
2009-03  
dc.identifier.citation
Molter, Ursula Maria; Zuberman, Leandro; A Fractal Plancherel Theorem; Michigan State University Press; Real Analysis Exchange; 34; 1; 3-2009; 1-16  
dc.identifier.issn
0147-1937  
dc.identifier.uri
http://hdl.handle.net/11336/245148  
dc.description.abstract
A measure µ on R n is called locally and uniformly h-dimensional if µ(Br(x)) ≤ h(r) for all x ∈ R n and for all 0 < r < 1, where h is a real valued function. If f ∈ L 2 (µ) and Fµf denotes its Fourier transform with respect to µ, it is not true (in general) that Fµf ∈ L 2 (e.g. [10]). However in this paper we prove that, under certain hypothesis on h, for any f ∈ L 2 (µ) the L 2 -norm of its Fourier transform restricted to a ball of radius r has the same order of growth as r nh(r −1 ) when r → ∞. Moreover we prove that the ratio between these quantities is bounded by the L 2 (µ)-norm of f (Theorem 3.2). By imposing certain restrictions on the measure µ, we can also obtain a lower bound for this ratio (Theorem 4.3). These results generalize the ones obtained by Strichartz in [10] where he considered the particular case in which h(x) = x α .  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Michigan State University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HAUSDORFF MEASURES  
dc.subject
FOURIER TRANSFORM  
dc.subject
DIMENSION  
dc.subject
PLANCHEREL  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Fractal Plancherel Theorem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-03T13:28:02Z  
dc.identifier.eissn
1930-1219  
dc.journal.volume
34  
dc.journal.number
1  
dc.journal.pagination
1-16  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Louisville  
dc.description.fil
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Zuberman, Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.journal.title
Real Analysis Exchange  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/real-analysis-exchange/volume-34/issue-1/A-Fractal-Plancherel-Theorem/rae/1242738921.full