Artículo
A Fractal Plancherel Theorem
Fecha de publicación:
03/2009
Editorial:
Michigan State University Press
Revista:
Real Analysis Exchange
ISSN:
0147-1937
e-ISSN:
1930-1219
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A measure µ on R n is called locally and uniformly h-dimensional if µ(Br(x)) ≤ h(r) for all x ∈ R n and for all 0 < r < 1, where h is a real valued function. If f ∈ L 2 (µ) and Fµf denotes its Fourier transform with respect to µ, it is not true (in general) that Fµf ∈ L 2 (e.g. [10]). However in this paper we prove that, under certain hypothesis on h, for any f ∈ L 2 (µ) the L 2 -norm of its Fourier transform restricted to a ball of radius r has the same order of growth as r nh(r −1 ) when r → ∞. Moreover we prove that the ratio between these quantities is bounded by the L 2 (µ)-norm of f (Theorem 3.2). By imposing certain restrictions on the measure µ, we can also obtain a lower bound for this ratio (Theorem 4.3). These results generalize the ones obtained by Strichartz in [10] where he considered the particular case in which h(x) = x α .
Palabras clave:
HAUSDORFF MEASURES
,
FOURIER TRANSFORM
,
DIMENSION
,
PLANCHEREL
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Molter, Ursula Maria; Zuberman, Leandro; A Fractal Plancherel Theorem; Michigan State University Press; Real Analysis Exchange; 34; 1; 3-2009; 1-16
Compartir