Mostrar el registro sencillo del ítem
dc.contributor.author
Martinez, Sandra Rita
dc.contributor.author
Wolanski, Noemi Irene
dc.date.available
2024-09-27T15:23:26Z
dc.date.issued
2009-01
dc.identifier.citation
Martinez, Sandra Rita; Wolanski, Noemi Irene; A Singular Perturbation Problem for a Quasi-Linear Operator Satisfying the Natural Growth Condition of Lieberman; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 41; 1; 1-2009; 318-359
dc.identifier.issn
0036-1410
dc.identifier.uri
http://hdl.handle.net/11336/245145
dc.description.abstract
In this paper we study the following problem. For ε > 0, take uε as a solution of Luε := div ( g(|∇uε|) |∇uε| ∇uε) = βε(uε), uε ≥ 0. A solution to (Pε) is a function uε ∈ W1,G(Ω)∩L∞(Ω) such that Ω g(|∇uε|) ∇uε |∇uε| ∇ϕ dx = − Ω ϕ βε(uε) dx for every ϕ ∈ C∞0 (Ω). Here βε(s) = 1 ε β s ε , with β ∈ Lip(R), β > 0 in (0, 1) and β = 0 otherwise. We are interested in the limiting problem, when ε → 0. As in previous work with L = Δ or L = Δp we prove, under appropriate assumptions, that any limiting function is a weak solution to a free boundary problem. Moreover, for nondegenerate limits we prove that the reduced free boundary is a C1,α surface. This result is new even for Δp. Throughout the paper, we assume that g satisfies the conditions introduced by Lieberman in [Comm. Partial Differential Equations, 16 (1991), pp. 311-361].
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society for Industrial and Applied Mathematics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Free boundaries
dc.subject
Orlicz spaces
dc.subject
Singular perturbation
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Singular Perturbation Problem for a Quasi-Linear Operator Satisfying the Natural Growth Condition of Lieberman
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-09-03T13:28:14Z
dc.journal.volume
41
dc.journal.number
1
dc.journal.pagination
318-359
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Philadelphia
dc.description.fil
Fil: Martinez, Sandra Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Siam Journal On Mathematical Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/070703740
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1137/070703740
Archivos asociados