Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Singular Perturbation Problem for a Quasi-Linear Operator Satisfying the Natural Growth Condition of Lieberman

Martinez, Sandra RitaIcon ; Wolanski, Noemi IreneIcon
Fecha de publicación: 01/2009
Editorial: Society for Industrial and Applied Mathematics
Revista: Siam Journal On Mathematical Analysis
ISSN: 0036-1410
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

In this paper we study the following problem. For ε > 0, take uε as a solution of Luε := div ( g(|∇uε|) |∇uε| ∇uε) = βε(uε), uε ≥ 0. A solution to (Pε) is a function uε ∈ W1,G(Ω)∩L∞(Ω) such that Ω g(|∇uε|) ∇uε |∇uε| ∇ϕ dx = − Ω ϕ βε(uε) dx for every ϕ ∈ C∞0 (Ω). Here βε(s) = 1 ε β s ε , with β ∈ Lip(R), β > 0 in (0, 1) and β = 0 otherwise. We are interested in the limiting problem, when ε → 0. As in previous work with L = Δ or L = Δp we prove, under appropriate assumptions, that any limiting function is a weak solution to a free boundary problem. Moreover, for nondegenerate limits we prove that the reduced free boundary is a C1,α surface. This result is new even for Δp. Throughout the paper, we assume that g satisfies the conditions introduced by Lieberman in [Comm. Partial Differential Equations, 16 (1991), pp. 311-361].
Palabras clave: Free boundaries , Orlicz spaces , Singular perturbation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 429.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/245145
URL: https://epubs.siam.org/doi/10.1137/070703740
DOI: https://doi.org/10.1137/070703740
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Martinez, Sandra Rita; Wolanski, Noemi Irene; A Singular Perturbation Problem for a Quasi-Linear Operator Satisfying the Natural Growth Condition of Lieberman; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 41; 1; 1-2009; 318-359
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES