Mostrar el registro sencillo del ítem
dc.contributor.author
Velis, Danilo Ruben
dc.contributor.author
Gómez, Julián Luis
dc.date.available
2024-09-25T11:20:34Z
dc.date.issued
2024-11
dc.identifier.citation
Velis, Danilo Ruben; Gómez, Julián Luis; Poldw: A Python code to denoise 3C seismic data with a new threshold-free polarization technique; Society of Exploration Geophysicists; Geophysics; 89; 6; 11-2024; 109-116
dc.identifier.issn
0016-8033
dc.identifier.uri
http://hdl.handle.net/11336/244973
dc.description.abstract
We present a Python code that implements a novel threshold-free polarization strategy for removing random noise from three-component (3C) linearly polarized seismic data. The code, which we refer to as poldw (polarization denoising through windowing), uses closed-form formulas along sliding windows that span the data to determine the optimal rotation angles that allow the transfer of most of the signal energy to a given component. The denoised 3C data is obtained after canceling out the other two components, which are assumed to contain predominantly noise, and rotating back. The method is simple and efficient because it only requires setting the sliding window length. Synthetic and microseismic field data examples show the method’s effectiveness, which significantly improves the signal-to-noise ratio without the need for threshold-based polarization filters. Even so, these filters can be pipelined in the rotation-based strategy for additional noise removal if necessary. When the dataset contains non-linearly polarized data or significant non-random noise, the method is likely to fail. For robustness against non-Gaussian noise and outliers, poldw allows for the use of alternative norms like the L1- or Lp-norms instead of the energy. In addition to the code, we provide a Jupyter notebook to illustrate the method step by step and reproduce the results of the field data example.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society of Exploration Geophysicists
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Microseismic
dc.subject
Software
dc.subject
Python
dc.subject.classification
Geoquímica y Geofísica
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Poldw: A Python code to denoise 3C seismic data with a new threshold-free polarization technique
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-09-23T13:42:10Z
dc.journal.volume
89
dc.journal.number
6
dc.journal.pagination
109-116
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Tulsa
dc.description.fil
Fil: Velis, Danilo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
dc.description.fil
Fil: Gómez, Julián Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. YPF - Tecnología; Argentina
dc.journal.title
Geophysics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/10.1190/geo2023-0684.1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1190/geo2023-0684.1
Archivos asociados