Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Poldw: A Python code to denoise 3C seismic data with a new threshold-free polarization technique

Velis, Danilo RubenIcon ; Gómez, Julián LuisIcon
Fecha de publicación: 11/2024
Editorial: Society of Exploration Geophysicists
Revista: Geophysics
ISSN: 0016-8033
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Geoquímica y Geofísica

Resumen

We present a Python code that implements a novel threshold-free polarization strategy for removing random noise from three-component (3C) linearly polarized seismic data. The code, which we refer to as poldw (polarization denoising through windowing), uses closed-form formulas along sliding windows that span the data to determine the optimal rotation angles that allow the transfer of most of the signal energy to a given component. The denoised 3C data is obtained after canceling out the other two components, which are assumed to contain predominantly noise, and rotating back. The method is simple and efficient because it only requires setting the sliding window length. Synthetic and microseismic field data examples show the method’s effectiveness, which significantly improves the signal-to-noise ratio without the need for threshold-based polarization filters. Even so, these filters can be pipelined in the rotation-based strategy for additional noise removal if necessary. When the dataset contains non-linearly polarized data or significant non-random noise, the method is likely to fail. For robustness against non-Gaussian noise and outliers, poldw allows for the use of alternative norms like the L1- or Lp-norms instead of the energy. In addition to the code, we provide a Jupyter notebook to illustrate the method step by step and reproduce the results of the field data example.
Palabras clave: Microseismic , Software , Python
Ver el registro completo
 
Archivos asociados
Tamaño: 12.02Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/244973
URL: https://library.seg.org/doi/10.1190/geo2023-0684.1
DOI: http://dx.doi.org/10.1190/geo2023-0684.1
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Velis, Danilo Ruben; Gómez, Julián Luis; Poldw: A Python code to denoise 3C seismic data with a new threshold-free polarization technique; Society of Exploration Geophysicists; Geophysics; 89; 6; 11-2024; 109-116
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES