Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Gonzalo Exequiel  
dc.date.available
2024-09-18T14:31:06Z  
dc.date.issued
2024-02  
dc.identifier.citation
Alvarez, Gonzalo Exequiel; Hybrid optimization model with Neural Network approach for renewable energy prediction and scheduling in large scale systems; Growing Science; Management Science Letters; 14; 4; 2-2024; 247-264  
dc.identifier.issn
1923-9335  
dc.identifier.uri
http://hdl.handle.net/11336/244559  
dc.description.abstract
Climate change demands clean energy solutions, and renewable sources such as solar and wind are prime candidates. However, their variability poses challenges for their integration into large-scale power systems. This paper addresses this issue by proposing a novel hybrid mathematical model. The proposal integrates both fossil and renewable sources, considering real-world constraints such as system demand, reserves, and transmission dynamics. The model combines several approaches. By using a novel block composition technique, the computational complexity is reduced, making the model applicable to large-scale systems. A neural network is also developed to improve the forecasting of renewable energy production, which is crucial for managing its intermittency. The effectiveness of the proposed model is tested by considering the large Argentinean electricity system, demonstrating its practical applicability. The results show that acceptable forecasts can be obtained for the generation and transmission scheduling of the whole system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Growing Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Renewable energy integration  
dc.subject
Large-scale power systems  
dc.subject
Intermittency  
dc.subject
Hybrid modeling  
dc.subject
Neural networks  
dc.subject
Argentina Electric System  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Hybrid optimization model with Neural Network approach for renewable energy prediction and scheduling in large scale systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-26T11:00:02Z  
dc.identifier.eissn
1923-9343  
dc.journal.volume
14  
dc.journal.number
4  
dc.journal.pagination
247-264  
dc.journal.pais
Canadá  
dc.journal.ciudad
Vancouver  
dc.description.fil
Fil: Alvarez, Gonzalo Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Management Science Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://growingscience.com/beta/msl/6797-hybrid-optimization-model-with-neural-network-approach-for-renewable-energy-prediction-and-scheduling-in-large-scale-systems.html  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5267/j.msl.2024.2.003