Mostrar el registro sencillo del ítem
dc.contributor.author
Alvarez, Gonzalo Exequiel
dc.date.available
2024-09-18T14:31:06Z
dc.date.issued
2024-02
dc.identifier.citation
Alvarez, Gonzalo Exequiel; Hybrid optimization model with Neural Network approach for renewable energy prediction and scheduling in large scale systems; Growing Science; Management Science Letters; 14; 4; 2-2024; 247-264
dc.identifier.issn
1923-9335
dc.identifier.uri
http://hdl.handle.net/11336/244559
dc.description.abstract
Climate change demands clean energy solutions, and renewable sources such as solar and wind are prime candidates. However, their variability poses challenges for their integration into large-scale power systems. This paper addresses this issue by proposing a novel hybrid mathematical model. The proposal integrates both fossil and renewable sources, considering real-world constraints such as system demand, reserves, and transmission dynamics. The model combines several approaches. By using a novel block composition technique, the computational complexity is reduced, making the model applicable to large-scale systems. A neural network is also developed to improve the forecasting of renewable energy production, which is crucial for managing its intermittency. The effectiveness of the proposed model is tested by considering the large Argentinean electricity system, demonstrating its practical applicability. The results show that acceptable forecasts can be obtained for the generation and transmission scheduling of the whole system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Growing Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Renewable energy integration
dc.subject
Large-scale power systems
dc.subject
Intermittency
dc.subject
Hybrid modeling
dc.subject
Neural networks
dc.subject
Argentina Electric System
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Hybrid optimization model with Neural Network approach for renewable energy prediction and scheduling in large scale systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-26T11:00:02Z
dc.identifier.eissn
1923-9343
dc.journal.volume
14
dc.journal.number
4
dc.journal.pagination
247-264
dc.journal.pais
Canadá
dc.journal.ciudad
Vancouver
dc.description.fil
Fil: Alvarez, Gonzalo Exequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Management Science Letters
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://growingscience.com/beta/msl/6797-hybrid-optimization-model-with-neural-network-approach-for-renewable-energy-prediction-and-scheduling-in-large-scale-systems.html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5267/j.msl.2024.2.003
Archivos asociados