Mostrar el registro sencillo del ítem
dc.contributor.author
Alvarez, Ezequiel
dc.contributor.author
Szewc, Manuel
dc.contributor.author
Szynkman, Alejandro Andrés
dc.contributor.author
Tanco, Santiago Andrés
dc.contributor.author
Tarutina, Tatiana
dc.date.available
2024-09-09T11:00:02Z
dc.date.issued
2023-04
dc.identifier.citation
Alvarez, Ezequiel; Szewc, Manuel; Szynkman, Alejandro Andrés; Tanco, Santiago Andrés; Tarutina, Tatiana; Exploring unsupervised top tagging using Bayesian inference; SciPost Foundation; SciPost Physics Core; 6; 2; 4-2023; 1-19
dc.identifier.uri
http://hdl.handle.net/11336/243762
dc.description.abstract
Recognizing hadronically decaying top-quark jets in a sample of jets, or even its total fraction in the sample, is an important step in many LHC searches for Standard Model and Beyond Standard Model physics as well. Although there exists outstanding top-tagger algorithms, their construction and their expected performance rely on Montecarlo simulations, which may induce potential biases. For these reasons we develop two simple unsupervised top-tagger algorithms based on performing Bayesian inference on a mixture model. In one of them we use as the observed variable a new geometrically-based observable Ã3, and in the other we consider the more traditional τ3/τ2 N-subjettiness ratio, which yields a better performance. As expected, we find that the unsupervised tagger performance is below existing supervised taggers, reaching expected Area Under Curve AUC ∼ 0.80 − 0.81 and accuracies of about 69% − 75% in a full range of sample purity. However, these performances are more robust to possible biases in the Montecarlo that their supervised counterparts. Our findings are a step towards exploring and considering simpler and unbiased taggers.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
SciPost Foundation
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Jets
dc.subject
machine learning
dc.subject
top quark
dc.subject.classification
Física de Partículas y Campos
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Exploring unsupervised top tagging using Bayesian inference
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-19T15:10:40Z
dc.identifier.eissn
2666-9366
dc.journal.volume
6
dc.journal.number
2
dc.journal.pagination
1-19
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Szewc, Manuel. University of Cincinnati; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Szynkman, Alejandro Andrés. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
dc.description.fil
Fil: Tanco, Santiago Andrés. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
dc.description.fil
Fil: Tarutina, Tatiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
dc.journal.title
SciPost Physics Core
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://scipost.org/10.21468/SciPostPhysCore.6.2.046
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.21468/SCIPOSTPHYSCORE.6.2.046
Archivos asociados