Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Ezequiel  
dc.contributor.author
Szewc, Manuel  
dc.contributor.author
Szynkman, Alejandro Andrés  
dc.contributor.author
Tanco, Santiago Andrés  
dc.contributor.author
Tarutina, Tatiana  
dc.date.available
2024-09-09T11:00:02Z  
dc.date.issued
2023-04  
dc.identifier.citation
Alvarez, Ezequiel; Szewc, Manuel; Szynkman, Alejandro Andrés; Tanco, Santiago Andrés; Tarutina, Tatiana; Exploring unsupervised top tagging using Bayesian inference; SciPost Foundation; SciPost Physics Core; 6; 2; 4-2023; 1-19  
dc.identifier.uri
http://hdl.handle.net/11336/243762  
dc.description.abstract
Recognizing hadronically decaying top-quark jets in a sample of jets, or even its total fraction in the sample, is an important step in many LHC searches for Standard Model and Beyond Standard Model physics as well. Although there exists outstanding top-tagger algorithms, their construction and their expected performance rely on Montecarlo simulations, which may induce potential biases. For these reasons we develop two simple unsupervised top-tagger algorithms based on performing Bayesian inference on a mixture model. In one of them we use as the observed variable a new geometrically-based observable Ã3, and in the other we consider the more traditional τ3/τ2 N-subjettiness ratio, which yields a better performance. As expected, we find that the unsupervised tagger performance is below existing supervised taggers, reaching expected Area Under Curve AUC ∼ 0.80 − 0.81 and accuracies of about 69% − 75% in a full range of sample purity. However, these performances are more robust to possible biases in the Montecarlo that their supervised counterparts. Our findings are a step towards exploring and considering simpler and unbiased taggers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
SciPost Foundation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Jets  
dc.subject
machine learning  
dc.subject
top quark  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Exploring unsupervised top tagging using Bayesian inference  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-19T15:10:40Z  
dc.identifier.eissn
2666-9366  
dc.journal.volume
6  
dc.journal.number
2  
dc.journal.pagination
1-19  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Szewc, Manuel. University of Cincinnati; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Szynkman, Alejandro Andrés. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Tanco, Santiago Andrés. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Tarutina, Tatiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.journal.title
SciPost Physics Core  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://scipost.org/10.21468/SciPostPhysCore.6.2.046  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.21468/SCIPOSTPHYSCORE.6.2.046