Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exploring unsupervised top tagging using Bayesian inference

Alvarez, EzequielIcon ; Szewc, ManuelIcon ; Szynkman, Alejandro AndrésIcon ; Tanco, Santiago AndrésIcon ; Tarutina, TatianaIcon
Fecha de publicación: 04/2023
Editorial: SciPost Foundation
Revista: SciPost Physics Core
e-ISSN: 2666-9366
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

Recognizing hadronically decaying top-quark jets in a sample of jets, or even its total fraction in the sample, is an important step in many LHC searches for Standard Model and Beyond Standard Model physics as well. Although there exists outstanding top-tagger algorithms, their construction and their expected performance rely on Montecarlo simulations, which may induce potential biases. For these reasons we develop two simple unsupervised top-tagger algorithms based on performing Bayesian inference on a mixture model. In one of them we use as the observed variable a new geometrically-based observable Ã3, and in the other we consider the more traditional τ3/τ2 N-subjettiness ratio, which yields a better performance. As expected, we find that the unsupervised tagger performance is below existing supervised taggers, reaching expected Area Under Curve AUC ∼ 0.80 − 0.81 and accuracies of about 69% − 75% in a full range of sample purity. However, these performances are more robust to possible biases in the Montecarlo that their supervised counterparts. Our findings are a step towards exploring and considering simpler and unbiased taggers.
Palabras clave: Jets , machine learning , top quark
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 472.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/243762
URL: https://scipost.org/10.21468/SciPostPhysCore.6.2.046
DOI: http://dx.doi.org/10.21468/SCIPOSTPHYSCORE.6.2.046
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Alvarez, Ezequiel; Szewc, Manuel; Szynkman, Alejandro Andrés; Tanco, Santiago Andrés; Tarutina, Tatiana; Exploring unsupervised top tagging using Bayesian inference; SciPost Foundation; SciPost Physics Core; 6; 2; 4-2023; 1-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES