Mostrar el registro sencillo del ítem
dc.contributor.author
Monteserin, Ariel José
dc.contributor.author
Amandi, Analia Adriana
dc.date.available
2024-09-06T15:53:25Z
dc.date.issued
2010-12
dc.identifier.citation
Monteserin, Ariel José; Amandi, Analia Adriana; Agents That Learn What Argument to Select In Argumentation-Based Negotiations; International Association for the Development of the Information Society; International Journal on Computer Science and Information Systems; 5; 2; 12-2010; 86-97
dc.identifier.issn
1646-3692
dc.identifier.uri
http://hdl.handle.net/11336/243715
dc.description.abstract
Argument selection is considered the essence of the strategy in argumentation-based negotiation. An agent, which is arguing during a negotiation, has to decide what arguments are the best to persuade the opponent. In fact, in each negotiation step, the agent must select an argument from a set of candidate arguments by applying some selection criterion. For this task, the agent observes some factors of the negotiation context, for instance trust in the opponent, expected utility, among others. Usually, argument selection mechanisms are defined statically. However, as the negotiation context varies from a negotiation to another, defining a static selection mechanism it is not useful. For this reason, we present in this paper a novel approach to personalize argument selection mechanisms in the context of argumentation-based negotiation. The selection mechanism defines a set of preferences that determine how preferable it is to utter an argument in a given context. Our approach maintains a hierarchy of preferences in order to learn new preferences and update the existing ones as the agent experience increases. We tested this approach in a simulated multiagent system and obtained promising results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
International Association for the Development of the Information Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARGUMENT SELECTION
dc.subject
ARGUMENTATION-BASED NEGOTIATION
dc.subject
AUTONOMOUS AGENTS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Agents That Learn What Argument to Select In Argumentation-Based Negotiations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-09-02T12:19:51Z
dc.journal.volume
5
dc.journal.number
2
dc.journal.pagination
86-97
dc.journal.pais
Portugal
dc.journal.ciudad
Lisboa
dc.description.fil
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
International Journal on Computer Science and Information Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.iadisportal.org/ijcsis/papers/2010110206.pdf
Archivos asociados