Mostrar el registro sencillo del ítem

dc.contributor.author
Monteserin, Ariel José  
dc.contributor.author
Amandi, Analia Adriana  
dc.date.available
2024-09-06T15:53:25Z  
dc.date.issued
2010-12  
dc.identifier.citation
Monteserin, Ariel José; Amandi, Analia Adriana; Agents That Learn What Argument to Select In Argumentation-Based Negotiations; International Association for the Development of the Information Society; International Journal on Computer Science and Information Systems; 5; 2; 12-2010; 86-97  
dc.identifier.issn
1646-3692  
dc.identifier.uri
http://hdl.handle.net/11336/243715  
dc.description.abstract
Argument selection is considered the essence of the strategy in argumentation-based negotiation. An agent, which is arguing during a negotiation, has to decide what arguments are the best to persuade the opponent. In fact, in each negotiation step, the agent must select an argument from a set of candidate arguments by applying some selection criterion. For this task, the agent observes some factors of the negotiation context, for instance trust in the opponent, expected utility, among others. Usually, argument selection mechanisms are defined statically. However, as the negotiation context varies from a negotiation to another, defining a static selection mechanism it is not useful. For this reason, we present in this paper a novel approach to personalize argument selection mechanisms in the context of argumentation-based negotiation. The selection mechanism defines a set of preferences that determine how preferable it is to utter an argument in a given context. Our approach maintains a hierarchy of preferences in order to learn new preferences and update the existing ones as the agent experience increases. We tested this approach in a simulated multiagent system and obtained promising results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
International Association for the Development of the Information Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARGUMENT SELECTION  
dc.subject
ARGUMENTATION-BASED NEGOTIATION  
dc.subject
AUTONOMOUS AGENTS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Agents That Learn What Argument to Select In Argumentation-Based Negotiations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-02T12:19:51Z  
dc.journal.volume
5  
dc.journal.number
2  
dc.journal.pagination
86-97  
dc.journal.pais
Portugal  
dc.journal.ciudad
Lisboa  
dc.description.fil
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
International Journal on Computer Science and Information Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.iadisportal.org/ijcsis/papers/2010110206.pdf