Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Agents That Learn What Argument to Select In Argumentation-Based Negotiations

Monteserin, Ariel JoséIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 12/2010
Editorial: International Association for the Development of the Information Society
Revista: International Journal on Computer Science and Information Systems
ISSN: 1646-3692
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Argument selection is considered the essence of the strategy in argumentation-based negotiation. An agent, which is arguing during a negotiation, has to decide what arguments are the best to persuade the opponent. In fact, in each negotiation step, the agent must select an argument from a set of candidate arguments by applying some selection criterion. For this task, the agent observes some factors of the negotiation context, for instance trust in the opponent, expected utility, among others. Usually, argument selection mechanisms are defined statically. However, as the negotiation context varies from a negotiation to another, defining a static selection mechanism it is not useful. For this reason, we present in this paper a novel approach to personalize argument selection mechanisms in the context of argumentation-based negotiation. The selection mechanism defines a set of preferences that determine how preferable it is to utter an argument in a given context. Our approach maintains a hierarchy of preferences in order to learn new preferences and update the existing ones as the agent experience increases. We tested this approach in a simulated multiagent system and obtained promising results.
Palabras clave: ARGUMENT SELECTION , ARGUMENTATION-BASED NEGOTIATION , AUTONOMOUS AGENTS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 134.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/243715
URL: https://www.iadisportal.org/ijcsis/papers/2010110206.pdf
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Monteserin, Ariel José; Amandi, Analia Adriana; Agents That Learn What Argument to Select In Argumentation-Based Negotiations; International Association for the Development of the Information Society; International Journal on Computer Science and Information Systems; 5; 2; 12-2010; 86-97
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES