Mostrar el registro sencillo del ítem

dc.contributor.author
Purlis, Emmanuel  
dc.date.available
2024-09-03T15:28:35Z  
dc.date.issued
2023-12  
dc.identifier.citation
Purlis, Emmanuel; Physics-Informed Machine Learning: the Next Big Trend in Food Process Modelling?; Springer; Current Food Science and Technology Reports; 2; 1; 12-2023; 1-6  
dc.identifier.issn
2662-8473  
dc.identifier.uri
http://hdl.handle.net/11336/243493  
dc.description.abstract
The goal of this short review is to introduce a newhybrid modelling approach, i.e. physics-informed machine learning (PIML), todeal with transport phenomena-based problems and related applications in foodengineering. To evaluate its potential, we investigate the fundamentals of themethod and most relevant contributions.Overall, PIML is in a development phase but has alreadyshown interesting capabilities to find solutions of partial differentialequations. This approach integrates powerful machine learning tools like neuralnetworks with knowledge-guided learning to find physically consistentsolutions. Both forward and inverse problems can be tackled without the need ofa large data set for training.Considering the features of PIML, including cost ofimplementation and computing speed, we conclude that this new approach willplay a key role in the virtualisation of food products and processes, and thedevelopment of digital twins. We can expect more contributions of PIML in foodengineering in the next few years.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PHYSICS-INFORMED NEURAL NETWORKS  
dc.subject
DATA-DRIVEN MODEL  
dc.subject
DEEP LEARNING  
dc.subject
PHYSICS-BASED MODEL  
dc.subject
SURROGATE MODEL  
dc.subject
TRANSPORT PROCESSES  
dc.subject.classification
Alimentos y Bebidas  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Physics-Informed Machine Learning: the Next Big Trend in Food Process Modelling?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-05T13:18:26Z  
dc.journal.volume
2  
dc.journal.number
1  
dc.journal.pagination
1-6  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Purlis, Emmanuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina  
dc.journal.title
Current Food Science and Technology Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s43555-023-00012-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s43555-023-00012-6