Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Physics-Informed Machine Learning: the Next Big Trend in Food Process Modelling?

Purlis, EmmanuelIcon
Fecha de publicación: 12/2023
Editorial: Springer
Revista: Current Food Science and Technology Reports
ISSN: 2662-8473
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Alimentos y Bebidas

Resumen

The goal of this short review is to introduce a newhybrid modelling approach, i.e. physics-informed machine learning (PIML), todeal with transport phenomena-based problems and related applications in foodengineering. To evaluate its potential, we investigate the fundamentals of themethod and most relevant contributions.Overall, PIML is in a development phase but has alreadyshown interesting capabilities to find solutions of partial differentialequations. This approach integrates powerful machine learning tools like neuralnetworks with knowledge-guided learning to find physically consistentsolutions. Both forward and inverse problems can be tackled without the need ofa large data set for training.Considering the features of PIML, including cost ofimplementation and computing speed, we conclude that this new approach willplay a key role in the virtualisation of food products and processes, and thedevelopment of digital twins. We can expect more contributions of PIML in foodengineering in the next few years.
Palabras clave: PHYSICS-INFORMED NEURAL NETWORKS , DATA-DRIVEN MODEL , DEEP LEARNING , PHYSICS-BASED MODEL , SURROGATE MODEL , TRANSPORT PROCESSES
Ver el registro completo
 
Archivos asociados
Tamaño: 822.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/243493
URL: https://link.springer.com/10.1007/s43555-023-00012-6
DOI: http://dx.doi.org/10.1007/s43555-023-00012-6
Colecciones
Articulos(CIDCA)
Articulos de CENTRO DE INV EN CRIOTECNOLOGIA DE ALIMENTOS (I)
Citación
Purlis, Emmanuel; Physics-Informed Machine Learning: the Next Big Trend in Food Process Modelling?; Springer; Current Food Science and Technology Reports; 2; 1; 12-2023; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES