Mostrar el registro sencillo del ítem

dc.contributor.author
Pérez Beltrán, C. H.  
dc.contributor.author
Robles, A. D.  
dc.contributor.author
Rodríguez, Nicolás Artemio  
dc.contributor.author
Ortega Gavilán, F.  
dc.contributor.author
Jiménez Carvelo, A. M.  
dc.date.available
2024-09-02T12:02:09Z  
dc.date.issued
2024-03  
dc.identifier.citation
Pérez Beltrán, C. H.; Robles, A. D.; Rodríguez, Nicolás Artemio; Ortega Gavilán, F.; Jiménez Carvelo, A. M.; Artificial intelligence and water quality: From drinking water to wastewater; Elsevier; Trac-Trends In Analytical Chemistry; 172; 3-2024; 1-12  
dc.identifier.issn
0165-9936  
dc.identifier.uri
http://hdl.handle.net/11336/243389  
dc.description.abstract
The transformative impact of Artificial Intelligence (AI) technologies, particularly Machine Learning (ML), on the analysis of spectroscopic data in water quality assessment cannot be overstated. We remark the ways in which AI and ML have revolutionized the analysis and prediction of water quality parameters. These technologies efficiently process spectral data from various sources, identify contaminants, and support early detection systems. However, AI tools have limitations, including the need for a large and diverse dataset for optimal performance, and some studies used small datasets, limiting the predictive power of the models. Open databases can aid in expanding AI applications in water quality control and treatment. The potential of AI and spectroscopic techniques reduce costs, promote environmentally sustainable water treatment, and enhance water and environmental quality. Finally, we emphasize the need for legislative changes and collaboration between organizations to harness the synergy between these technologies, and its vital water resources.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Machine Learning algorithms  
dc.subject
Water quality  
dc.subject
Artificial neural network  
dc.subject
Artificial intelligence-based solutions  
dc.subject
Spectroscopic techniques  
dc.subject
Water bodies  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Artificial intelligence and water quality: From drinking water to wastewater  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-26T11:00:16Z  
dc.journal.volume
172  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Pérez Beltrán, C. H.. Universidad Autónoma de Sinaloa; México  
dc.description.fil
Fil: Robles, A. D.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina  
dc.description.fil
Fil: Rodríguez, Nicolás Artemio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Ortega Gavilán, F.. Universidad de Granada; España  
dc.description.fil
Fil: Jiménez Carvelo, A. M.. Universidad de Granada; España  
dc.journal.title
Trac-Trends In Analytical Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165993624000797  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.trac.2024.117597