Artículo
Artificial intelligence and water quality: From drinking water to wastewater
Pérez Beltrán, C. H.; Robles, A. D.; Rodríguez, Nicolás Artemio
; Ortega Gavilán, F.; Jiménez Carvelo, A. M.
Fecha de publicación:
03/2024
Editorial:
Elsevier
Revista:
Trac-Trends In Analytical Chemistry
ISSN:
0165-9936
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The transformative impact of Artificial Intelligence (AI) technologies, particularly Machine Learning (ML), on the analysis of spectroscopic data in water quality assessment cannot be overstated. We remark the ways in which AI and ML have revolutionized the analysis and prediction of water quality parameters. These technologies efficiently process spectral data from various sources, identify contaminants, and support early detection systems. However, AI tools have limitations, including the need for a large and diverse dataset for optimal performance, and some studies used small datasets, limiting the predictive power of the models. Open databases can aid in expanding AI applications in water quality control and treatment. The potential of AI and spectroscopic techniques reduce costs, promote environmentally sustainable water treatment, and enhance water and environmental quality. Finally, we emphasize the need for legislative changes and collaboration between organizations to harness the synergy between these technologies, and its vital water resources.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Pérez Beltrán, C. H.; Robles, A. D.; Rodríguez, Nicolás Artemio; Ortega Gavilán, F.; Jiménez Carvelo, A. M.; Artificial intelligence and water quality: From drinking water to wastewater; Elsevier; Trac-Trends In Analytical Chemistry; 172; 3-2024; 1-12
Compartir
Altmétricas