Mostrar el registro sencillo del ítem

dc.contributor.author
Rodríguez, Nicolás Daniel  
dc.contributor.author
Villemur, Martin  
dc.contributor.author
Julian, Pedro Marcelo  
dc.date.available
2024-09-02T09:43:37Z  
dc.date.issued
2023  
dc.identifier.citation
Architecture Analysis for Symmetric Simplicial Deep Neural Networks on Chip; 57th Annual Conference on Information Sciences and Systems; Baltimore; Estados Unidos; 2023; 1-6  
dc.identifier.uri
http://hdl.handle.net/11336/243349  
dc.description.abstract
Convolutional Neural Networks (CNN) are the dom-inating Machine Learning (ML) architecture used for complex tasks such as image classification despite their required usage of heavy computational resources, large storage space and power-demanding hardware. This motivates the exploration of alternative implementations using efficient neuromorphic hardware for resource constrained applications. Conventional Simplicial Piece-Wise Linear implementations allow the development of efficient hardware to run DNNs by avoiding multipliers, but demand large memory requirements. Symmetric Simplicial (SymSim) functions preserve the efficiency of the implementation while reducing the number of parameters per layer, and can be trained to replace convolutional layers and natively run non-linear filters such as MaxPool. This paper analyzes architectures to implement a Neural Network accelerator for SymSim operations optimizing the number of parallel cores to reduce the computational time. For this, we develop a model that takes into account the core processing times as well as the data transfer times.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Neuromorphics  
dc.subject
Shape  
dc.subject
Computational modeling  
dc.subject
Neural networks  
dc.subject
Writing  
dc.subject
Data transfer  
dc.subject
Hardware  
dc.subject
Neuromorphic Computing  
dc.subject
Neural Network Accelerators  
dc.subject
Digital Architectures  
dc.subject.classification
Hardware y Arquitectura de Computadoras  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Architecture Analysis for Symmetric Simplicial Deep Neural Networks on Chip  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-08-07T09:25:40Z  
dc.journal.pagination
1-6  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Baltimore  
dc.description.fil
Fil: Rodríguez, Nicolás Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.description.fil
Fil: Villemur, Martin. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10089667  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/CISS56502.2023.10089667  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
57th Annual Conference on Information Sciences and Systems  
dc.date.evento
2023-03-22  
dc.description.ciudadEvento
Baltimore  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers  
dc.source.libro
57th Annual Conference on Information Sciences and Systems  
dc.date.eventoHasta
2023-03-24  
dc.type
Conferencia