Mostrar el registro sencillo del ítem
dc.contributor.author
Rodríguez, Nicolás Daniel
dc.contributor.author
Villemur, Martin
dc.contributor.author
Julian, Pedro Marcelo
dc.date.available
2024-09-02T09:43:37Z
dc.date.issued
2023
dc.identifier.citation
Architecture Analysis for Symmetric Simplicial Deep Neural Networks on Chip; 57th Annual Conference on Information Sciences and Systems; Baltimore; Estados Unidos; 2023; 1-6
dc.identifier.uri
http://hdl.handle.net/11336/243349
dc.description.abstract
Convolutional Neural Networks (CNN) are the dom-inating Machine Learning (ML) architecture used for complex tasks such as image classification despite their required usage of heavy computational resources, large storage space and power-demanding hardware. This motivates the exploration of alternative implementations using efficient neuromorphic hardware for resource constrained applications. Conventional Simplicial Piece-Wise Linear implementations allow the development of efficient hardware to run DNNs by avoiding multipliers, but demand large memory requirements. Symmetric Simplicial (SymSim) functions preserve the efficiency of the implementation while reducing the number of parameters per layer, and can be trained to replace convolutional layers and natively run non-linear filters such as MaxPool. This paper analyzes architectures to implement a Neural Network accelerator for SymSim operations optimizing the number of parallel cores to reduce the computational time. For this, we develop a model that takes into account the core processing times as well as the data transfer times.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Neuromorphics
dc.subject
Shape
dc.subject
Computational modeling
dc.subject
Neural networks
dc.subject
Writing
dc.subject
Data transfer
dc.subject
Hardware
dc.subject
Neuromorphic Computing
dc.subject
Neural Network Accelerators
dc.subject
Digital Architectures
dc.subject.classification
Hardware y Arquitectura de Computadoras
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Architecture Analysis for Symmetric Simplicial Deep Neural Networks on Chip
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2024-08-07T09:25:40Z
dc.journal.pagination
1-6
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Baltimore
dc.description.fil
Fil: Rodríguez, Nicolás Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.description.fil
Fil: Villemur, Martin. Universidad Nacional del Sur; Argentina
dc.description.fil
Fil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10089667
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/CISS56502.2023.10089667
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
57th Annual Conference on Information Sciences and Systems
dc.date.evento
2023-03-22
dc.description.ciudadEvento
Baltimore
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
57th Annual Conference on Information Sciences and Systems
dc.date.eventoHasta
2023-03-24
dc.type
Conferencia
Archivos asociados