Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Architecture Analysis for Symmetric Simplicial Deep Neural Networks on Chip

Rodríguez, Nicolás DanielIcon ; Villemur, Martin; Julian, Pedro MarceloIcon
Tipo del evento: Conferencia
Nombre del evento: 57th Annual Conference on Information Sciences and Systems
Fecha del evento: 22/03/2023
Institución Organizadora: Institute of Electrical and Electronics Engineers;
Título del Libro: 57th Annual Conference on Information Sciences and Systems
Editorial: Institute of Electrical and Electronics Engineers
Idioma: Inglés
Clasificación temática:
Hardware y Arquitectura de Computadoras

Resumen

Convolutional Neural Networks (CNN) are the dom-inating Machine Learning (ML) architecture used for complex tasks such as image classification despite their required usage of heavy computational resources, large storage space and power-demanding hardware. This motivates the exploration of alternative implementations using efficient neuromorphic hardware for resource constrained applications. Conventional Simplicial Piece-Wise Linear implementations allow the development of efficient hardware to run DNNs by avoiding multipliers, but demand large memory requirements. Symmetric Simplicial (SymSim) functions preserve the efficiency of the implementation while reducing the number of parameters per layer, and can be trained to replace convolutional layers and natively run non-linear filters such as MaxPool. This paper analyzes architectures to implement a Neural Network accelerator for SymSim operations optimizing the number of parallel cores to reduce the computational time. For this, we develop a model that takes into account the core processing times as well as the data transfer times.
Palabras clave: Neuromorphics , Shape , Computational modeling , Neural networks , Writing , Data transfer , Hardware , Neuromorphic Computing , Neural Network Accelerators , Digital Architectures
Ver el registro completo
 
Archivos asociados
Tamaño: 542.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/243349
URL: https://ieeexplore.ieee.org/document/10089667
DOI: https://doi.org/10.1109/CISS56502.2023.10089667
Colecciones
Eventos(IIIE)
Eventos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Architecture Analysis for Symmetric Simplicial Deep Neural Networks on Chip; 57th Annual Conference on Information Sciences and Systems; Baltimore; Estados Unidos; 2023; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES