Mostrar el registro sencillo del ítem

dc.contributor.author
Rohr, Cristian Oscar  
dc.contributor.author
Sciara, Mariela Ines  
dc.contributor.author
Brun, Bianca  
dc.contributor.author
Fay, Fabian  
dc.contributor.author
Vazquez, Martin Pablo  
dc.date.available
2024-08-20T15:05:15Z  
dc.date.issued
2023-06  
dc.identifier.citation
Rohr, Cristian Oscar; Sciara, Mariela Ines; Brun, Bianca; Fay, Fabian; Vazquez, Martin Pablo; Generation of a robust reference gut microbiome dataset for an urban population in Argentina optimized by a machine learning approach; Cold Spring Harbor Laboratory Press; BioXriv; 2023; 6-2023; 1-26  
dc.identifier.issn
2692-8205  
dc.identifier.uri
http://hdl.handle.net/11336/242882  
dc.description.abstract
Robust human microbiome analysis requires robust reference datasets obtained from a population that presents similar habits to the one we are trying to assess.We reported here the construction of a robust reference dataset of healthy individuals from urban and surrounding rural areas of the Argentine population. We screened 200 volunteers with strict inclusion/exclusion criteria. Volunteers were also screened with routine blood clinical test analysis and a complete metabolome profile from blood and urine to remove outliers before inclusion in the Next Generation Sequencing dataset. Sequencing was done on an Illumina MiSeq using the V3-V4 16S rRNA. Using these data, we performed de novo community structure prediction by applying clustering methodology based on seven distance and dissimilarity metrics and two clustering methods to the reference set. Using this approach, we discovered four different enterotypes in this community structure. We then trained a model for the classification of any new sample into the structure of the reference set. Once the new sample was classified, it was compared to the reference ranges of both the enterotype-specific subset and the whole reference set.Finally, we challenged the robustness of this methodology using samples from two test case volunteers with clinically proven gut dysbiosis in a time-series sampling with dietary interventions. Our results pointed to the need to carefully analyze the results of gut microbiome in the context of enterotype-specific rather than to a whole population dataset.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cold Spring Harbor Laboratory Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MICROBIOME  
dc.subject
PREVENTATIVE MEDICINE  
dc.subject
NGS  
dc.subject
CHRONIC DISEASES  
dc.subject.classification
Biotecnología relacionada con la Salud  
dc.subject.classification
Biotecnología de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Generation of a robust reference gut microbiome dataset for an urban population in Argentina optimized by a machine learning approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-18T13:42:02Z  
dc.identifier.eissn
2692-8205  
dc.journal.volume
2023  
dc.journal.pagination
1-26  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Rohr, Cristian Oscar. Heritas S.a (heritas S.a); . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sciara, Mariela Ines. Cibic; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Brun, Bianca. Heritas S.a (heritas S.a);  
dc.description.fil
Fil: Fay, Fabian. Heritas S.a (heritas S.a); . Cibic; Argentina  
dc.description.fil
Fil: Vazquez, Martin Pablo. Heritas S.a (heritas S.a); . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
BioXriv  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.biorxiv.org/content/10.1101/2023.06.24.546376v1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1101/2023.06.24.546376