Mostrar el registro sencillo del ítem
dc.contributor.author
Rohr, Cristian Oscar
dc.contributor.author
Sciara, Mariela Ines
dc.contributor.author
Brun, Bianca
dc.contributor.author
Fay, Fabian
dc.contributor.author
Vazquez, Martin Pablo
dc.date.available
2024-08-20T15:05:15Z
dc.date.issued
2023-06
dc.identifier.citation
Rohr, Cristian Oscar; Sciara, Mariela Ines; Brun, Bianca; Fay, Fabian; Vazquez, Martin Pablo; Generation of a robust reference gut microbiome dataset for an urban population in Argentina optimized by a machine learning approach; Cold Spring Harbor Laboratory Press; BioXriv; 2023; 6-2023; 1-26
dc.identifier.issn
2692-8205
dc.identifier.uri
http://hdl.handle.net/11336/242882
dc.description.abstract
Robust human microbiome analysis requires robust reference datasets obtained from a population that presents similar habits to the one we are trying to assess.We reported here the construction of a robust reference dataset of healthy individuals from urban and surrounding rural areas of the Argentine population. We screened 200 volunteers with strict inclusion/exclusion criteria. Volunteers were also screened with routine blood clinical test analysis and a complete metabolome profile from blood and urine to remove outliers before inclusion in the Next Generation Sequencing dataset. Sequencing was done on an Illumina MiSeq using the V3-V4 16S rRNA. Using these data, we performed de novo community structure prediction by applying clustering methodology based on seven distance and dissimilarity metrics and two clustering methods to the reference set. Using this approach, we discovered four different enterotypes in this community structure. We then trained a model for the classification of any new sample into the structure of the reference set. Once the new sample was classified, it was compared to the reference ranges of both the enterotype-specific subset and the whole reference set.Finally, we challenged the robustness of this methodology using samples from two test case volunteers with clinically proven gut dysbiosis in a time-series sampling with dietary interventions. Our results pointed to the need to carefully analyze the results of gut microbiome in the context of enterotype-specific rather than to a whole population dataset.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cold Spring Harbor Laboratory Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MICROBIOME
dc.subject
PREVENTATIVE MEDICINE
dc.subject
NGS
dc.subject
CHRONIC DISEASES
dc.subject.classification
Biotecnología relacionada con la Salud
dc.subject.classification
Biotecnología de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Generation of a robust reference gut microbiome dataset for an urban population in Argentina optimized by a machine learning approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-07-18T13:42:02Z
dc.identifier.eissn
2692-8205
dc.journal.volume
2023
dc.journal.pagination
1-26
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Rohr, Cristian Oscar. Heritas S.a (heritas S.a); . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Sciara, Mariela Ines. Cibic; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Brun, Bianca. Heritas S.a (heritas S.a);
dc.description.fil
Fil: Fay, Fabian. Heritas S.a (heritas S.a); . Cibic; Argentina
dc.description.fil
Fil: Vazquez, Martin Pablo. Heritas S.a (heritas S.a); . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
BioXriv
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.biorxiv.org/content/10.1101/2023.06.24.546376v1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1101/2023.06.24.546376
Archivos asociados