Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Generation of a robust reference gut microbiome dataset for an urban population in Argentina optimized by a machine learning approach

Rohr, Cristian OscarIcon ; Sciara, Mariela InesIcon ; Brun, Bianca; Fay, Fabian; Vazquez, Martin PabloIcon
Fecha de publicación: 06/2023
Editorial: Cold Spring Harbor Laboratory Press
Revista: BioXriv
ISSN: 2692-8205
e-ISSN: 2692-8205
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biotecnología relacionada con la Salud

Resumen

Robust human microbiome analysis requires robust reference datasets obtained from a population that presents similar habits to the one we are trying to assess.We reported here the construction of a robust reference dataset of healthy individuals from urban and surrounding rural areas of the Argentine population. We screened 200 volunteers with strict inclusion/exclusion criteria. Volunteers were also screened with routine blood clinical test analysis and a complete metabolome profile from blood and urine to remove outliers before inclusion in the Next Generation Sequencing dataset. Sequencing was done on an Illumina MiSeq using the V3-V4 16S rRNA. Using these data, we performed de novo community structure prediction by applying clustering methodology based on seven distance and dissimilarity metrics and two clustering methods to the reference set. Using this approach, we discovered four different enterotypes in this community structure. We then trained a model for the classification of any new sample into the structure of the reference set. Once the new sample was classified, it was compared to the reference ranges of both the enterotype-specific subset and the whole reference set.Finally, we challenged the robustness of this methodology using samples from two test case volunteers with clinically proven gut dysbiosis in a time-series sampling with dietary interventions. Our results pointed to the need to carefully analyze the results of gut microbiome in the context of enterotype-specific rather than to a whole population dataset.
Palabras clave: MICROBIOME , PREVENTATIVE MEDICINE , NGS , CHRONIC DISEASES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.197Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/242882
URL: https://www.biorxiv.org/content/10.1101/2023.06.24.546376v1
DOI: https://doi.org/10.1101/2023.06.24.546376
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Rohr, Cristian Oscar; Sciara, Mariela Ines; Brun, Bianca; Fay, Fabian; Vazquez, Martin Pablo; Generation of a robust reference gut microbiome dataset for an urban population in Argentina optimized by a machine learning approach; Cold Spring Harbor Laboratory Press; BioXriv; 2023; 6-2023; 1-26
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES