Mostrar el registro sencillo del ítem
dc.contributor.author
Rossit, Diego Gabriel

dc.contributor.author
Rossit, Daniel Alejandro

dc.contributor.author
Nesmachnow, Sergio

dc.date.available
2024-08-20T14:07:16Z
dc.date.issued
2024-08-10
dc.identifier.citation
Rossit, Diego Gabriel; Rossit, Daniel Alejandro; Nesmachnow, Sergio; Enhancing Mass Customization Manufacturing: Multiobjective Metaheuristic Algorithms for flow shop Production in Smart Industry; Springer; SN Computer Science; 5; 782; 10-8-2024; 1-24
dc.identifier.uri
http://hdl.handle.net/11336/242869
dc.description.abstract
The current landscape of massive production industries is undergoing significant transformations driven by emerging customer trends and new smart manufacturing technologies. One such change is the imperative to implement mass customization, wherein products are tailored to individual customer specifications while still ensuring cost efficiency through large-scale production processes. These shifts can profoundly impact various facets of the industry. This study focuses on the necessary adaptations in shop-floor production planning. Specifically, it proposes the use of efficient evolutionary algorithms to tackle the flowshop with missing operations, considering different optimization objectives: makespan, weighted total tardiness, and total completion time. An extensive computational experimentation is conducted across a range of realistic instances, encompassing varying numbers of jobs, operations, and probabilities of missing operations. The findings demonstrate the competitiveness of the proposed approach and enable the identification of the most suitable evolutionary algorithms for addressing this problem. Additionally, the impact of the probability of missing operations on optimization objectives is discussed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
INDUSTRY 4.0
dc.subject
SMART INDUSTRY
dc.subject
MASS CUSTOMIZATION
dc.subject
MISSING OPERATIONS, FLOWSHOP SCHEDULING PROBLEM, MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS
dc.subject.classification
Otras Ingenierías y Tecnologías

dc.subject.classification
Otras Ingenierías y Tecnologías

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Enhancing Mass Customization Manufacturing: Multiobjective Metaheuristic Algorithms for flow shop Production in Smart Industry
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-19T14:58:01Z
dc.identifier.eissn
2661-8907
dc.journal.volume
5
dc.journal.number
782
dc.journal.pagination
1-24
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
dc.description.fil
Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Nesmachnow, Sergio. Facultad de Ingeniería; Uruguay
dc.journal.title
SN Computer Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1177/0734242X241248729
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://lc.cx/bB897e
Archivos asociados