Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhancing Mass Customization Manufacturing: Multiobjective Metaheuristic Algorithms for flow shop Production in Smart Industry

Rossit, Diego GabrielIcon ; Rossit, Daniel AlejandroIcon ; Nesmachnow, Sergio
Fecha de publicación: 10/08/2024
Editorial: Springer
Revista: SN Computer Science
e-ISSN: 2661-8907
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

The current landscape of massive production industries is undergoing significant transformations driven by emerging customer trends and new smart manufacturing technologies. One such change is the imperative to implement mass customization, wherein products are tailored to individual customer specifications while still ensuring cost efficiency through large-scale production processes. These shifts can profoundly impact various facets of the industry. This study focuses on the necessary adaptations in shop-floor production planning. Specifically, it proposes the use of efficient evolutionary algorithms to tackle the flowshop with missing operations, considering different optimization objectives: makespan, weighted total tardiness, and total completion time. An extensive computational experimentation is conducted across a range of realistic instances, encompassing varying numbers of jobs, operations, and probabilities of missing operations. The findings demonstrate the competitiveness of the proposed approach and enable the identification of the most suitable evolutionary algorithms for addressing this problem. Additionally, the impact of the probability of missing operations on optimization objectives is discussed.
Palabras clave: INDUSTRY 4.0 , SMART INDUSTRY , MASS CUSTOMIZATION , MISSING OPERATIONS, FLOWSHOP SCHEDULING PROBLEM, MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.800Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/242869
URL: https://doi.org/10.1177/0734242X241248729
URL: https://lc.cx/bB897e
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Rossit, Diego Gabriel; Rossit, Daniel Alejandro; Nesmachnow, Sergio; Enhancing Mass Customization Manufacturing: Multiobjective Metaheuristic Algorithms for flow shop Production in Smart Industry; Springer; SN Computer Science; 5; 782; 10-8-2024; 1-24
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES