Mostrar el registro sencillo del ítem

dc.contributor.author
Chiumiento, Eduardo Hernan  
dc.date.available
2024-08-20T10:32:55Z  
dc.date.issued
2010-08  
dc.identifier.citation
Chiumiento, Eduardo Hernan; Metric geometry in infinite dimensional Stiefel manifolds; Elsevier Science; Differential Geometry and its Applications; 28; 4; 8-2010; 469-479  
dc.identifier.issn
0926-2245  
dc.identifier.uri
http://hdl.handle.net/11336/242788  
dc.description.abstract
Let J be a separable Banach ideal in the space of bounded operators acting in a Hilbert space H and I the set of partial isometries in H. Fix v in I. In this paper we study metric properties of the J-Stiefel manifold associated to v, namely SG = { v_0 in I , : , v- v_0 in J, , j(v_0*v_0,v*v)=0 }, where j( , ) is the Fredholm index of a pair of projections. Let UJ(H) be the Banach-Lie group of unitary operators which are perturbations of the identity by elements in J. Then SG coincides with the orbit of v under the action of UJ(H) on I given by (u,w) v_0=uv_0w*, u,w in UJ(H) and v_0 in SG. We endow SG with a quotient Finsler metric by means of the Banach quotient norm of the Lie algebra of UJ(H) by the Lie algebra of the isotropy group. We give a characterization of the rectifiable distance induced by this metric. In fact, we show that the rectifiable distance coincide with the quotient distance of UJ(H) by the isotropy group. Hence this metric defines the quotient topology in SG. The other results concern with minimal curves in J-Stiefel manifolds when the ideal J is fixed as the compact operators in H. The initial value problem is solved when the partial isometry v has finite rank. In addition, we use a length-reducing map into the Grassmannian to find some special partial isometries that can be join with a curve of minimal length.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PARTIAL ISOMETRY  
dc.subject
BANACH IDEAL  
dc.subject
FINSLER METRIC  
dc.subject
MINIMAL CURVES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Metric geometry in infinite dimensional Stiefel manifolds  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-19T11:38:28Z  
dc.journal.volume
28  
dc.journal.number
4  
dc.journal.pagination
469-479  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.journal.title
Differential Geometry and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224509001259  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.difgeo.2009.12.003