Mostrar el registro sencillo del ítem
dc.contributor.author
Chiumiento, Eduardo Hernan
dc.date.available
2024-08-20T10:32:55Z
dc.date.issued
2010-08
dc.identifier.citation
Chiumiento, Eduardo Hernan; Metric geometry in infinite dimensional Stiefel manifolds; Elsevier Science; Differential Geometry and its Applications; 28; 4; 8-2010; 469-479
dc.identifier.issn
0926-2245
dc.identifier.uri
http://hdl.handle.net/11336/242788
dc.description.abstract
Let J be a separable Banach ideal in the space of bounded operators acting in a Hilbert space H and I the set of partial isometries in H. Fix v in I. In this paper we study metric properties of the J-Stiefel manifold associated to v, namely SG = { v_0 in I , : , v- v_0 in J, , j(v_0*v_0,v*v)=0 }, where j( , ) is the Fredholm index of a pair of projections. Let UJ(H) be the Banach-Lie group of unitary operators which are perturbations of the identity by elements in J. Then SG coincides with the orbit of v under the action of UJ(H) on I given by (u,w) v_0=uv_0w*, u,w in UJ(H) and v_0 in SG. We endow SG with a quotient Finsler metric by means of the Banach quotient norm of the Lie algebra of UJ(H) by the Lie algebra of the isotropy group. We give a characterization of the rectifiable distance induced by this metric. In fact, we show that the rectifiable distance coincide with the quotient distance of UJ(H) by the isotropy group. Hence this metric defines the quotient topology in SG. The other results concern with minimal curves in J-Stiefel manifolds when the ideal J is fixed as the compact operators in H. The initial value problem is solved when the partial isometry v has finite rank. In addition, we use a length-reducing map into the Grassmannian to find some special partial isometries that can be join with a curve of minimal length.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PARTIAL ISOMETRY
dc.subject
BANACH IDEAL
dc.subject
FINSLER METRIC
dc.subject
MINIMAL CURVES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Metric geometry in infinite dimensional Stiefel manifolds
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-19T11:38:28Z
dc.journal.volume
28
dc.journal.number
4
dc.journal.pagination
469-479
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.journal.title
Differential Geometry and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224509001259
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.difgeo.2009.12.003
Archivos asociados