Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Metric geometry in infinite dimensional Stiefel manifolds

Chiumiento, Eduardo HernanIcon
Fecha de publicación: 08/2010
Editorial: Elsevier Science
Revista: Differential Geometry and its Applications
ISSN: 0926-2245
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Let J be a separable Banach ideal in the space of bounded operators acting in a Hilbert space H and I the set of partial isometries in H. Fix v in I. In this paper we study metric properties of the J-Stiefel manifold associated to v, namely SG = { v_0 in I , : , v- v_0 in J, , j(v_0*v_0,v*v)=0 }, where j( , ) is the Fredholm index of a pair of projections. Let UJ(H) be the Banach-Lie group of unitary operators which are perturbations of the identity by elements in J. Then SG coincides with the orbit of v under the action of UJ(H) on I given by (u,w) v_0=uv_0w*, u,w in UJ(H) and v_0 in SG. We endow SG with a quotient Finsler metric by means of the Banach quotient norm of the Lie algebra of UJ(H) by the Lie algebra of the isotropy group. We give a characterization of the rectifiable distance induced by this metric. In fact, we show that the rectifiable distance coincide with the quotient distance of UJ(H) by the isotropy group. Hence this metric defines the quotient topology in SG. The other results concern with minimal curves in J-Stiefel manifolds when the ideal J is fixed as the compact operators in H. The initial value problem is solved when the partial isometry v has finite rank. In addition, we use a length-reducing map into the Grassmannian to find some special partial isometries that can be join with a curve of minimal length.
Palabras clave: PARTIAL ISOMETRY , BANACH IDEAL , FINSLER METRIC , MINIMAL CURVES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 242.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/242788
URL: https://www.sciencedirect.com/science/article/pii/S0926224509001259
DOI: http://dx.doi.org/10.1016/j.difgeo.2009.12.003
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Chiumiento, Eduardo Hernan; Metric geometry in infinite dimensional Stiefel manifolds; Elsevier Science; Differential Geometry and its Applications; 28; 4; 8-2010; 469-479
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES