Artículo
Non-existence of graded unital homomorphisms between Leavitt algebras and their Cuntz splices
Fecha de publicación:
02/2022
Editorial:
World Scientific
Revista:
Journal of Algebra and its Applications
ISSN:
0219-4988
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let n ≥ 2 , let R n be the graph consisting of one vertex and n loops and let R n − be its Cuntz splice. Let L n = L ( R n ) and L n − = L ( R n − ) be the Leavitt path algebras over a unital ring ℓ . Let C m be the cyclic group on 2 ≤ m ≤ ∞ elements. Equip L n and L n − with their natural C m -gradings. We show that under mild conditions on ℓ , which are satisfied, for example, when ℓ is a field or a principal ideal domain, there are no unital C m -graded ring homomorphisms L n → L n − nor in the opposite direction.
Palabras clave:
Leavitt path algebras
,
Cuntz splice
,
Graded homomorphisms
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Arnone, Guido; Cortiñas, Guillermo Horacio; Non-existence of graded unital homomorphisms between Leavitt algebras and their Cuntz splices; World Scientific; Journal of Algebra and its Applications; 22; 04; 2-2022; 1-10
Compartir
Altmétricas