Mostrar el registro sencillo del ítem

dc.contributor.author
Müller Cleve, Simon F.  
dc.contributor.author
Fra, Vittorio  
dc.contributor.author
Khacef, Lyes  
dc.contributor.author
Pequeño Zurro, Alejandro  
dc.contributor.author
Klepatsch, Daniel  
dc.contributor.author
Forno, Evelina  
dc.contributor.author
Gigena Ivanovich, Diego  
dc.contributor.author
Rastogi, Shavika  
dc.contributor.author
Urgese, Gianvito  
dc.contributor.author
Zenke, Friedemann  
dc.contributor.author
Bartolozzi, Chiara  
dc.date.available
2024-07-25T10:28:46Z  
dc.date.issued
2022-11  
dc.identifier.citation
Müller Cleve, Simon F.; Fra, Vittorio; Khacef, Lyes; Pequeño Zurro, Alejandro; Klepatsch, Daniel; et al.; Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware; Frontiers Media; Frontiers in Neuroscience; 16; 11-2022; 1-21  
dc.identifier.issn
1662-453X  
dc.identifier.uri
http://hdl.handle.net/11336/240801  
dc.description.abstract
Spatio-temporal pattern recognition is a fundamental ability of the brain which is required for numerous real-world activities. Recent deep learning approaches have reached outstanding accuracies in such tasks, but their implementation on conventional embedded solutions is still very computationally and energy expensive. Tactile sensing in robotic applications is a representative example where real-time processing and energy efficiency are required. Following a brain-inspired computing approach, we propose a new benchmark for spatio-temporal tactile pattern recognition at the edge through Braille letter reading. We recorded a new Braille letters dataset based on the capacitive tactile sensors of the iCub robot´s fingertip. We then investigated the importance of spatial and temporal information as well as the impact of event-based encoding on spike-based computation. Afterward, we trained and compared feedforward and recurrent Spiking Neural Networks (SNNs) offline using Backpropagation Through Time (BPTT) with surrogate gradients, then we deployed them on the Intel Loihi neuromorphic chip for fast and efficient inference. We compared our approach to standard classifiers, in particular to the Long Short-Term Memory (LSTM) deployed on the embedded NVIDIA Jetson GPU, in terms of classification accuracy, power, energy consumption, and delay. Our results show that the LSTM reaches ~97% of accuracy, outperforming the recurrent SNN by ~17% when using continuous frame-based data instead of event-based inputs. However, the recurrent SNN on Loihi with event-based inputs is ~500 times more energy-efficient than the LSTM on Jetson, requiring a total power of only ~30 mW. This work proposes a new benchmark for tactile sensing and highlights the challenges and opportunities of event-based encoding, neuromorphic hardware, and spike-based computing for spatio-temporal pattern recognition at the edge.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Media  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
spatio-temporal pattern recognition  
dc.subject
Braille reading  
dc.subject
tactile sensing  
dc.subject
event-based encoding  
dc.subject
neuromorphic hardware  
dc.subject
spiking neural networks  
dc.subject
benchmarking  
dc.subject.classification
Hardware y Arquitectura de Computadoras  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-24T12:54:48Z  
dc.journal.volume
16  
dc.journal.pagination
1-21  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Müller Cleve, Simon F.. Istituto Italiano Di Tecnologia; Italia  
dc.description.fil
Fil: Fra, Vittorio. Politecnico di Torino; Italia  
dc.description.fil
Fil: Khacef, Lyes. University of Groningen; Países Bajos  
dc.description.fil
Fil: Pequeño Zurro, Alejandro. Istituto Italiano Di Tecnologia; Italia  
dc.description.fil
Fil: Klepatsch, Daniel. Johannes Kepler Universität; Austria  
dc.description.fil
Fil: Forno, Evelina. Politecnico di Torino; Italia  
dc.description.fil
Fil: Gigena Ivanovich, Diego. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina  
dc.description.fil
Fil: Rastogi, Shavika. University Of Western Sydney.; Australia  
dc.description.fil
Fil: Urgese, Gianvito. University Of Hertfordshire; Reino Unido  
dc.description.fil
Fil: Zenke, Friedemann. Friedrich Miescher Institute for Biomedical Research; Suiza  
dc.description.fil
Fil: Bartolozzi, Chiara. Istituto Italiano Di Tecnologia; Italia  
dc.journal.title
Frontiers in Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnins.2022.951164/full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fnins.2022.951164