Mostrar el registro sencillo del ítem
dc.contributor.author
Müller Cleve, Simon F.
dc.contributor.author
Fra, Vittorio
dc.contributor.author
Khacef, Lyes
dc.contributor.author
Pequeño Zurro, Alejandro
dc.contributor.author
Klepatsch, Daniel
dc.contributor.author
Forno, Evelina
dc.contributor.author
Gigena Ivanovich, Diego
dc.contributor.author
Rastogi, Shavika
dc.contributor.author
Urgese, Gianvito
dc.contributor.author
Zenke, Friedemann
dc.contributor.author
Bartolozzi, Chiara
dc.date.available
2024-07-25T10:28:46Z
dc.date.issued
2022-11
dc.identifier.citation
Müller Cleve, Simon F.; Fra, Vittorio; Khacef, Lyes; Pequeño Zurro, Alejandro; Klepatsch, Daniel; et al.; Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware; Frontiers Media; Frontiers in Neuroscience; 16; 11-2022; 1-21
dc.identifier.issn
1662-453X
dc.identifier.uri
http://hdl.handle.net/11336/240801
dc.description.abstract
Spatio-temporal pattern recognition is a fundamental ability of the brain which is required for numerous real-world activities. Recent deep learning approaches have reached outstanding accuracies in such tasks, but their implementation on conventional embedded solutions is still very computationally and energy expensive. Tactile sensing in robotic applications is a representative example where real-time processing and energy efficiency are required. Following a brain-inspired computing approach, we propose a new benchmark for spatio-temporal tactile pattern recognition at the edge through Braille letter reading. We recorded a new Braille letters dataset based on the capacitive tactile sensors of the iCub robot´s fingertip. We then investigated the importance of spatial and temporal information as well as the impact of event-based encoding on spike-based computation. Afterward, we trained and compared feedforward and recurrent Spiking Neural Networks (SNNs) offline using Backpropagation Through Time (BPTT) with surrogate gradients, then we deployed them on the Intel Loihi neuromorphic chip for fast and efficient inference. We compared our approach to standard classifiers, in particular to the Long Short-Term Memory (LSTM) deployed on the embedded NVIDIA Jetson GPU, in terms of classification accuracy, power, energy consumption, and delay. Our results show that the LSTM reaches ~97% of accuracy, outperforming the recurrent SNN by ~17% when using continuous frame-based data instead of event-based inputs. However, the recurrent SNN on Loihi with event-based inputs is ~500 times more energy-efficient than the LSTM on Jetson, requiring a total power of only ~30 mW. This work proposes a new benchmark for tactile sensing and highlights the challenges and opportunities of event-based encoding, neuromorphic hardware, and spike-based computing for spatio-temporal pattern recognition at the edge.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Media
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
spatio-temporal pattern recognition
dc.subject
Braille reading
dc.subject
tactile sensing
dc.subject
event-based encoding
dc.subject
neuromorphic hardware
dc.subject
spiking neural networks
dc.subject
benchmarking
dc.subject.classification
Hardware y Arquitectura de Computadoras
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-07-24T12:54:48Z
dc.journal.volume
16
dc.journal.pagination
1-21
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Müller Cleve, Simon F.. Istituto Italiano Di Tecnologia; Italia
dc.description.fil
Fil: Fra, Vittorio. Politecnico di Torino; Italia
dc.description.fil
Fil: Khacef, Lyes. University of Groningen; Países Bajos
dc.description.fil
Fil: Pequeño Zurro, Alejandro. Istituto Italiano Di Tecnologia; Italia
dc.description.fil
Fil: Klepatsch, Daniel. Johannes Kepler Universität; Austria
dc.description.fil
Fil: Forno, Evelina. Politecnico di Torino; Italia
dc.description.fil
Fil: Gigena Ivanovich, Diego. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina
dc.description.fil
Fil: Rastogi, Shavika. University Of Western Sydney.; Australia
dc.description.fil
Fil: Urgese, Gianvito. University Of Hertfordshire; Reino Unido
dc.description.fil
Fil: Zenke, Friedemann. Friedrich Miescher Institute for Biomedical Research; Suiza
dc.description.fil
Fil: Bartolozzi, Chiara. Istituto Italiano Di Tecnologia; Italia
dc.journal.title
Frontiers in Neuroscience
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnins.2022.951164/full
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fnins.2022.951164
Archivos asociados