Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware

Müller Cleve, Simon F.; Fra, Vittorio; Khacef, Lyes; Pequeño Zurro, Alejandro; Klepatsch, Daniel; Forno, Evelina; Gigena Ivanovich, DiegoIcon ; Rastogi, Shavika; Urgese, Gianvito; Zenke, Friedemann; Bartolozzi, Chiara
Fecha de publicación: 11/2022
Editorial: Frontiers Media
Revista: Frontiers in Neuroscience
ISSN: 1662-453X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Hardware y Arquitectura de Computadoras

Resumen

Spatio-temporal pattern recognition is a fundamental ability of the brain which is required for numerous real-world activities. Recent deep learning approaches have reached outstanding accuracies in such tasks, but their implementation on conventional embedded solutions is still very computationally and energy expensive. Tactile sensing in robotic applications is a representative example where real-time processing and energy efficiency are required. Following a brain-inspired computing approach, we propose a new benchmark for spatio-temporal tactile pattern recognition at the edge through Braille letter reading. We recorded a new Braille letters dataset based on the capacitive tactile sensors of the iCub robot´s fingertip. We then investigated the importance of spatial and temporal information as well as the impact of event-based encoding on spike-based computation. Afterward, we trained and compared feedforward and recurrent Spiking Neural Networks (SNNs) offline using Backpropagation Through Time (BPTT) with surrogate gradients, then we deployed them on the Intel Loihi neuromorphic chip for fast and efficient inference. We compared our approach to standard classifiers, in particular to the Long Short-Term Memory (LSTM) deployed on the embedded NVIDIA Jetson GPU, in terms of classification accuracy, power, energy consumption, and delay. Our results show that the LSTM reaches ~97% of accuracy, outperforming the recurrent SNN by ~17% when using continuous frame-based data instead of event-based inputs. However, the recurrent SNN on Loihi with event-based inputs is ~500 times more energy-efficient than the LSTM on Jetson, requiring a total power of only ~30 mW. This work proposes a new benchmark for tactile sensing and highlights the challenges and opportunities of event-based encoding, neuromorphic hardware, and spike-based computing for spatio-temporal pattern recognition at the edge.
Palabras clave: spatio-temporal pattern recognition , Braille reading , tactile sensing , event-based encoding , neuromorphic hardware , spiking neural networks , benchmarking
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.827Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/240801
URL: https://www.frontiersin.org/articles/10.3389/fnins.2022.951164/full
DOI: http://dx.doi.org/10.3389/fnins.2022.951164
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Müller Cleve, Simon F.; Fra, Vittorio; Khacef, Lyes; Pequeño Zurro, Alejandro; Klepatsch, Daniel; et al.; Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware; Frontiers Media; Frontiers in Neuroscience; 16; 11-2022; 1-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES