Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez Leon, Jose Alberto  
dc.contributor.author
Acosta, Gerardo Gabriel  
dc.contributor.author
Mayosky, Miguel Angel  
dc.date.available
2024-07-16T11:11:53Z  
dc.date.issued
2009-04  
dc.identifier.citation
Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Mayosky, Miguel Angel; Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation; Elsevier Science; Robotics And Autonomous Systems; 57; 4; 4-2009; 411-419  
dc.identifier.issn
0921-8890  
dc.identifier.uri
http://hdl.handle.net/11336/240005  
dc.description.abstract
This paper deals with the study of scaling up behaviors in evolutive robotics (ER). Complex behaviors were obtained from simple ones. Each behavior is supported by an artificial neural network (ANN)-based controller or neurocontroller. Hence, a method for the generation of a hierarchy of neurocontrollers, resorting to the paradigm of Layered Evolution (LE), is developed and verified experimentally through computer simulations and tests in a Khepera® micro-robot. Several behavioral modules are initially evolved using specialized neurocontrollers based on different ANN paradigms. The results show that simple behaviors coordination through LE is a feasible strategy that gives rise to emergent complex behaviors. These complex behaviors can then solve real-world problems efficiently. From a pure evolutionary perspective, however, the methodology presented is too much dependent on user’s prior knowledge about the problem to solve and also that evolution take place in a rigid, prescribed framework. Mobile robot’s navigation in an unknown environment is used as a test bed for the proposed scaling strategies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
autonomous navigation  
dc.subject
robotics  
dc.subject
neural networks  
dc.subject
bio-inspiration  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-12T13:52:28Z  
dc.journal.volume
57  
dc.journal.number
4  
dc.journal.pagination
411-419  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Fernandez Leon, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. University of Sussex; Reino Unido  
dc.description.fil
Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Mayosky, Miguel Angel. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina  
dc.journal.title
Robotics And Autonomous Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.robot.2008.06.012