Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation

Fernandez Leon, Jose AlbertoIcon ; Acosta, Gerardo GabrielIcon ; Mayosky, Miguel Angel
Fecha de publicación: 04/2009
Editorial: Elsevier Science
Revista: Robotics And Autonomous Systems
ISSN: 0921-8890
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

This paper deals with the study of scaling up behaviors in evolutive robotics (ER). Complex behaviors were obtained from simple ones. Each behavior is supported by an artificial neural network (ANN)-based controller or neurocontroller. Hence, a method for the generation of a hierarchy of neurocontrollers, resorting to the paradigm of Layered Evolution (LE), is developed and verified experimentally through computer simulations and tests in a Khepera® micro-robot. Several behavioral modules are initially evolved using specialized neurocontrollers based on different ANN paradigms. The results show that simple behaviors coordination through LE is a feasible strategy that gives rise to emergent complex behaviors. These complex behaviors can then solve real-world problems efficiently. From a pure evolutionary perspective, however, the methodology presented is too much dependent on user’s prior knowledge about the problem to solve and also that evolution take place in a rigid, prescribed framework. Mobile robot’s navigation in an unknown environment is used as a test bed for the proposed scaling strategies.
Palabras clave: autonomous navigation , robotics , neural networks , bio-inspiration
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.582Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/240005
DOI: http://dx.doi.org/10.1016/j.robot.2008.06.012
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Mayosky, Miguel Angel; Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation; Elsevier Science; Robotics And Autonomous Systems; 57; 4; 4-2009; 411-419
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES