Artículo
Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries
Fecha de publicación:
03/2024
Editorial:
Wiley Blackwell Publishing, Inc
Revista:
Studies In Applied Mathematics
ISSN:
0022-2526
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstructionprocess for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Bravetti, A.; Grillo, Sergio Daniel; Marrero, J. C.; Padrón, E.; Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 153; 1; 3-2024; 1-53
Compartir
Altmétricas