Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Applying multivariate curve resolution modelling combined with discriminant tools on near-infrared spectra for distinguishing between cheese varieties and stages of ripening

Martín Tornero, Elísabet; Durán Merás, Isabel; Alcaraz, Mirta RaquelIcon ; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; Goicoechea, Hector CasimiroIcon
Fecha de publicación: 09/2024
Editorial: Elsevier Science
Revista: Microchemical Journal
ISSN: 0026-265X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

In this study, near-infrared (NIR) spectra were employed to monitor the ripening process of two kinds of soft cheese produced in the Extremadura region of Spain, manufactured by two different producers, “Torta del Casar” and “Queso de la Serena”. Spectra were collected from the interior of the cheeses and the rind and analysed using appropriate chemometric techniques to distinguish between the two varieties and among different weeks of the maturation process. Different chemometric tools, including multivariate curve resolution with alternating least squares (MCRALS), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and feed-forward artificial neural networks (FF-ANN), were utilised, resulting in outstanding discrimination outcomes with sensitivity, precision, specificity, and accuracy reaching values c.a. 1.00 in optimal scenarios. More comprehensive information was acquired from the rind spectra analysis, indicating that the sampling process can be performed without disturbing the cheese in a non-destructive way. Remarkably, the capability to distinguish between various weeks of ripening for both cheeses could enable manufacturers to produce market-ready products earlier than the typically established timeline.
Palabras clave: Multivariate curve resolution , Torta del Casar , Queso de la Serena , Linear discriminant analysis , Quadratic discriminant analysis , Artificial neural networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.863Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/239785
URL: https://linkinghub.elsevier.com/retrieve/pii/S0026265X24011512
DOI: http://dx.doi.org/10.1016/j.microc.2024.111039
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Martín Tornero, Elísabet; Durán Merás, Isabel; Alcaraz, Mirta Raquel; Muñoz de la Peña, Arsenio; Galeano Díaz, Teresa; et al.; Applying multivariate curve resolution modelling combined with discriminant tools on near-infrared spectra for distinguishing between cheese varieties and stages of ripening; Elsevier Science; Microchemical Journal; 204; 9-2024; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES