Mostrar el registro sencillo del ítem

dc.contributor.author
Tohmé, Fernando Abel  
dc.contributor.author
Gangle, Rocco  
dc.contributor.author
Caterina, Gianluca  
dc.date.available
2024-07-11T13:31:42Z  
dc.date.issued
2024-02-09  
dc.identifier.citation
Tohmé, Fernando Abel; Gangle, Rocco; Caterina, Gianluca; A category theory approach to the semiotics of machine learning; Springer Nature; Annals of Mathematics and Artificial Intelligence; 92; 9-2-2024; 733–751  
dc.identifier.uri
http://hdl.handle.net/11336/239648  
dc.description.abstract
The successes of Machine Learning, and in particular of Deep Learning systems, have led to a reformulation of the Artificial Intelligence agenda. One of the pressing issues in the field is the extraction of knowledge out of the behavior of those systems. In this paper we propose a semiotic analysis of that behavior, based on the formal model of learners. We analyze the topos-theoretic properties that ensure the logical expressivity of the knowledge embodied by learners. Furthermore, we show that there exists an ideal universal learner, able to interpret the knowledge gained about any possible function as well as about itself, which can be monotonically approximated by networks of increasing size.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
CATEGORY THEORY  
dc.subject
LEARNERS  
dc.subject
SEMIOTICS  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A category theory approach to the semiotics of machine learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-06-25T14:25:41Z  
dc.identifier.eissn
1573-7470  
dc.journal.volume
92  
dc.journal.pagination
733–751  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Gangle, Rocco. Endicott College. Center for Diagrammatic and Computational Philosophy; Estados Unidos  
dc.description.fil
Fil: Caterina, Gianluca. Endicott College. Center for Diagrammatic and Computational Philosophy; Estados Unidos  
dc.journal.title
Annals of Mathematics and Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10472-024-09932-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10472-024-09932-y