Mostrar el registro sencillo del ítem
dc.contributor.author
Tohmé, Fernando Abel
dc.contributor.author
Gangle, Rocco
dc.contributor.author
Caterina, Gianluca
dc.date.available
2024-07-11T13:31:42Z
dc.date.issued
2024-02-09
dc.identifier.citation
Tohmé, Fernando Abel; Gangle, Rocco; Caterina, Gianluca; A category theory approach to the semiotics of machine learning; Springer Nature; Annals of Mathematics and Artificial Intelligence; 92; 9-2-2024; 733–751
dc.identifier.uri
http://hdl.handle.net/11336/239648
dc.description.abstract
The successes of Machine Learning, and in particular of Deep Learning systems, have led to a reformulation of the Artificial Intelligence agenda. One of the pressing issues in the field is the extraction of knowledge out of the behavior of those systems. In this paper we propose a semiotic analysis of that behavior, based on the formal model of learners. We analyze the topos-theoretic properties that ensure the logical expressivity of the knowledge embodied by learners. Furthermore, we show that there exists an ideal universal learner, able to interpret the knowledge gained about any possible function as well as about itself, which can be monotonically approximated by networks of increasing size.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Nature
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
CATEGORY THEORY
dc.subject
LEARNERS
dc.subject
SEMIOTICS
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A category theory approach to the semiotics of machine learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-06-25T14:25:41Z
dc.identifier.eissn
1573-7470
dc.journal.volume
92
dc.journal.pagination
733–751
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Gangle, Rocco. Endicott College. Center for Diagrammatic and Computational Philosophy; Estados Unidos
dc.description.fil
Fil: Caterina, Gianluca. Endicott College. Center for Diagrammatic and Computational Philosophy; Estados Unidos
dc.journal.title
Annals of Mathematics and Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10472-024-09932-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10472-024-09932-y
Archivos asociados