Artículo
A category theory approach to the semiotics of machine learning
Fecha de publicación:
09/02/2024
Editorial:
Springer Nature
Revista:
Annals of Mathematics and Artificial Intelligence
e-ISSN:
1573-7470
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The successes of Machine Learning, and in particular of Deep Learning systems, have led to a reformulation of the Artificial Intelligence agenda. One of the pressing issues in the field is the extraction of knowledge out of the behavior of those systems. In this paper we propose a semiotic analysis of that behavior, based on the formal model of learners. We analyze the topos-theoretic properties that ensure the logical expressivity of the knowledge embodied by learners. Furthermore, we show that there exists an ideal universal learner, able to interpret the knowledge gained about any possible function as well as about itself, which can be monotonically approximated by networks of increasing size.
Palabras clave:
DEEP LEARNING
,
CATEGORY THEORY
,
LEARNERS
,
SEMIOTICS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Tohmé, Fernando Abel; Gangle, Rocco; Caterina, Gianluca; A category theory approach to the semiotics of machine learning; Springer Nature; Annals of Mathematics and Artificial Intelligence; 92; 9-2-2024; 733–751
Compartir
Altmétricas