Mostrar el registro sencillo del ítem

dc.contributor.author
Prado, Lara Eleonora  
dc.contributor.author
Hongn, Andrea  
dc.contributor.author
Pelle, Patricia  
dc.contributor.author
Bonomini, María Paula  
dc.contributor.other
Ferrández Vicente, José Manuel  
dc.contributor.other
Val Calvo, Mikel  
dc.contributor.other
Adeli, Hojjat  
dc.date.available
2024-07-08T11:06:51Z  
dc.date.issued
2024  
dc.identifier.citation
Stress classification model using speech : an ambulatory protocol-based database study; 10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024; Olhâo; Portugal; 2024; 245-252  
dc.identifier.isbn
978-3-031-61140-7  
dc.identifier.uri
http://hdl.handle.net/11336/239271  
dc.description.abstract
Chronic stress poses a significant risk to health, potentially leading to long-term diseases such as cancer and diabetes. Analyzing stress through speech presents a promising avenue, as it offers accessibility and scalability using only a microphone and processor. This study focuses on quantifying stress through speech analysis and its potential implications for disease prevention and treatment. A speech database was obtained from 36 subjects who participated in a stress induction protocol. Acoustic features, including Pitch and Mel-Frequency Cepstral Coefficients (MFCCs), were extracted from the audio recordings. Supervised parametric classifications were conducted using XGBoost, with feature sets defined based on correlation analysis and feature importance. The classification results were validated using leave-one-out validation. Key findings include the development of a speech database for stress detection in laboratory settings, optimization of feature sets for the model, resulting in a classification accuracy of 82%. These results highlight the feasibility of speech-based stress analysis and its potential impact on healthcare strategies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
STRESS  
dc.subject
VOICE  
dc.subject
SPEECH  
dc.subject
XGBOOST  
dc.subject
MACHINE LEARNING  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Stress classification model using speech : an ambulatory protocol-based database study  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-07-01T13:08:47Z  
dc.journal.pagination
245-252  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Prado, Lara Eleonora. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Hongn, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Pelle, Patricia. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina  
dc.description.fil
Fil: Bonomini, María Paula. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Politécnica de Cartagena; España  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-031-61140-7_24  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-61140-7_24  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024  
dc.date.evento
2024-06-04  
dc.description.ciudadEvento
Olhâo  
dc.description.paisEvento
Portugal  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad Politécnica de Cartagena  
dc.description.institucionOrganizadora
Universidad de Granada  
dc.description.institucionOrganizadora
Nova University Lisbon  
dc.description.institucionOrganizadora
Universidade do Algarve  
dc.source.libro
Artificial Intelligence for Neuroscience and Emotional Systems  
dc.date.eventoHasta
2024-06-07  
dc.type
Congreso