Mostrar el registro sencillo del ítem
dc.contributor.author
Prado, Lara Eleonora
dc.contributor.author
Hongn, Andrea
dc.contributor.author
Pelle, Patricia
dc.contributor.author
Bonomini, María Paula
dc.contributor.other
Ferrández Vicente, José Manuel
dc.contributor.other
Val Calvo, Mikel
dc.contributor.other
Adeli, Hojjat
dc.date.available
2024-07-08T11:06:51Z
dc.date.issued
2024
dc.identifier.citation
Stress classification model using speech : an ambulatory protocol-based database study; 10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024; Olhâo; Portugal; 2024; 245-252
dc.identifier.isbn
978-3-031-61140-7
dc.identifier.uri
http://hdl.handle.net/11336/239271
dc.description.abstract
Chronic stress poses a significant risk to health, potentially leading to long-term diseases such as cancer and diabetes. Analyzing stress through speech presents a promising avenue, as it offers accessibility and scalability using only a microphone and processor. This study focuses on quantifying stress through speech analysis and its potential implications for disease prevention and treatment. A speech database was obtained from 36 subjects who participated in a stress induction protocol. Acoustic features, including Pitch and Mel-Frequency Cepstral Coefficients (MFCCs), were extracted from the audio recordings. Supervised parametric classifications were conducted using XGBoost, with feature sets defined based on correlation analysis and feature importance. The classification results were validated using leave-one-out validation. Key findings include the development of a speech database for stress detection in laboratory settings, optimization of feature sets for the model, resulting in a classification accuracy of 82%. These results highlight the feasibility of speech-based stress analysis and its potential impact on healthcare strategies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
STRESS
dc.subject
VOICE
dc.subject
SPEECH
dc.subject
XGBOOST
dc.subject
MACHINE LEARNING
dc.subject.classification
Otras Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Stress classification model using speech : an ambulatory protocol-based database study
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2024-07-01T13:08:47Z
dc.journal.pagination
245-252
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Prado, Lara Eleonora. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Hongn, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Pelle, Patricia. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
dc.description.fil
Fil: Bonomini, María Paula. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Politécnica de Cartagena; España
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-031-61140-7_24
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-61140-7_24
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024
dc.date.evento
2024-06-04
dc.description.ciudadEvento
Olhâo
dc.description.paisEvento
Portugal
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Universidad Politécnica de Cartagena
dc.description.institucionOrganizadora
Universidad de Granada
dc.description.institucionOrganizadora
Nova University Lisbon
dc.description.institucionOrganizadora
Universidade do Algarve
dc.source.libro
Artificial Intelligence for Neuroscience and Emotional Systems
dc.date.eventoHasta
2024-06-07
dc.type
Congreso
Archivos asociados