Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Stress classification model using speech : an ambulatory protocol-based database study

Prado, Lara Eleonora; Hongn, AndreaIcon ; Pelle, Patricia; Bonomini, María Paula
Colaboradores: Ferrández Vicente, José Manuel; Val Calvo, Mikel; Adeli, Hojjat
Tipo del evento: Congreso
Nombre del evento: 10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024
Fecha del evento: 04/06/2024
Institución Organizadora: Universidad Politécnica de Cartagena; Universidad de Granada; Nova University Lisbon; Universidade do Algarve;
Título del Libro: Artificial Intelligence for Neuroscience and Emotional Systems
Editorial: Springer Verlag Berlín
ISBN: 978-3-031-61140-7
Idioma: Inglés
Clasificación temática:
Otras Ingeniería Médica

Resumen

Chronic stress poses a significant risk to health, potentially leading to long-term diseases such as cancer and diabetes. Analyzing stress through speech presents a promising avenue, as it offers accessibility and scalability using only a microphone and processor. This study focuses on quantifying stress through speech analysis and its potential implications for disease prevention and treatment. A speech database was obtained from 36 subjects who participated in a stress induction protocol. Acoustic features, including Pitch and Mel-Frequency Cepstral Coefficients (MFCCs), were extracted from the audio recordings. Supervised parametric classifications were conducted using XGBoost, with feature sets defined based on correlation analysis and feature importance. The classification results were validated using leave-one-out validation. Key findings include the development of a speech database for stress detection in laboratory settings, optimization of feature sets for the model, resulting in a classification accuracy of 82%. These results highlight the feasibility of speech-based stress analysis and its potential impact on healthcare strategies.
Palabras clave: STRESS , VOICE , SPEECH , XGBOOST , MACHINE LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.237Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/239271
DOI: https://doi.org/10.1007/978-3-031-61140-7_24
URL: https://link.springer.com/chapter/10.1007/978-3-031-61140-7_24
Colecciones
Eventos(IAM)
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Stress classification model using speech : an ambulatory protocol-based database study; 10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024; Olhâo; Portugal; 2024; 245-252
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES