Mostrar el registro sencillo del ítem

dc.contributor.author
Fechner, Diana Corina  
dc.contributor.author
Martínez, Ramón Alberto  
dc.contributor.author
Hidalgo, Melisa Jazmin  
dc.contributor.author
Araújo Gomes, Adriano  
dc.contributor.author
Pellerano, Roberto Gerardo  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.date.available
2024-07-04T11:29:35Z  
dc.date.issued
2024-08  
dc.identifier.citation
Fechner, Diana Corina; Martínez, Ramón Alberto; Hidalgo, Melisa Jazmin; Araújo Gomes, Adriano; Pellerano, Roberto Gerardo; et al.; Geographic authentication of argentinian teas by combining one-class models and discriminant methods for modeling near infrared spectra; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 251; 8-2024; 1-7  
dc.identifier.issn
0169-7439  
dc.identifier.uri
http://hdl.handle.net/11336/239026  
dc.description.abstract
In this study, 110 tea samples from South American countries (Argentina, Brazil, and Paraguay) and Asian countries (India and China) were analyzed using near-infrared spectroscopy (NIRS) together with a two-step chemometric authentication strategy (class modeling techniques and discriminant analysis) to authenticate commercial teas from Argentina. In the first step, one-class models were built and validated to authenticate South American teas using preprocessed NIRS data. For this purpose, data-driven soft independent modeling of class analogy (DD-SIMCA) and one-class partial least squares (OC-PLS) were used. The DD-SIMCA model gave the best results, with a sensitivity of 93.10%, specificity of 100%, and efficiency of 95.00%. In the second step, a support vector machine (SVM) was used to build and validate a multiclass model to discriminate between tea samples from Argentina and neighboring countries of South America. The best model was the combination of nine variables selected by the fast correlation-based filter (FCBF) method, with an accuracy of 98.30%. Therefore, we conclude that the combination of NIRS and two-step chemometric tools can be used to authenticate the geographical origin of samples with high inter-class similarity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLASSIFICATION  
dc.subject
CERTIFICATION  
dc.subject
NIR  
dc.subject
SPECTROSCOPY  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Geographic authentication of argentinian teas by combining one-class models and discriminant methods for modeling near infrared spectra  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-06-24T13:11:21Z  
dc.journal.volume
251  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Fechner, Diana Corina. Universidad Nacional de Rio Negro. Centro de Investigaciones y Transferencia de Rio Negro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Rio Negro; Argentina  
dc.description.fil
Fil: Martínez, Ramón Alberto. Universidad Nacional de Rio Negro. Centro de Investigaciones y Transferencia de Rio Negro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Rio Negro; Argentina  
dc.description.fil
Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina  
dc.description.fil
Fil: Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil  
dc.description.fil
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.journal.title
Chemometrics and Intelligent Laboratory Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169743924000960  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2024.105156