Mostrar el registro sencillo del ítem
dc.contributor.author
Fechner, Diana Corina
dc.contributor.author
Martínez, Ramón Alberto
dc.contributor.author
Hidalgo, Melisa Jazmin
dc.contributor.author
Araújo Gomes, Adriano
dc.contributor.author
Pellerano, Roberto Gerardo
dc.contributor.author
Goicoechea, Hector Casimiro
dc.date.available
2024-07-04T11:29:35Z
dc.date.issued
2024-08
dc.identifier.citation
Fechner, Diana Corina; Martínez, Ramón Alberto; Hidalgo, Melisa Jazmin; Araújo Gomes, Adriano; Pellerano, Roberto Gerardo; et al.; Geographic authentication of argentinian teas by combining one-class models and discriminant methods for modeling near infrared spectra; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 251; 8-2024; 1-7
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/239026
dc.description.abstract
In this study, 110 tea samples from South American countries (Argentina, Brazil, and Paraguay) and Asian countries (India and China) were analyzed using near-infrared spectroscopy (NIRS) together with a two-step chemometric authentication strategy (class modeling techniques and discriminant analysis) to authenticate commercial teas from Argentina. In the first step, one-class models were built and validated to authenticate South American teas using preprocessed NIRS data. For this purpose, data-driven soft independent modeling of class analogy (DD-SIMCA) and one-class partial least squares (OC-PLS) were used. The DD-SIMCA model gave the best results, with a sensitivity of 93.10%, specificity of 100%, and efficiency of 95.00%. In the second step, a support vector machine (SVM) was used to build and validate a multiclass model to discriminate between tea samples from Argentina and neighboring countries of South America. The best model was the combination of nine variables selected by the fast correlation-based filter (FCBF) method, with an accuracy of 98.30%. Therefore, we conclude that the combination of NIRS and two-step chemometric tools can be used to authenticate the geographical origin of samples with high inter-class similarity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLASSIFICATION
dc.subject
CERTIFICATION
dc.subject
NIR
dc.subject
SPECTROSCOPY
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Geographic authentication of argentinian teas by combining one-class models and discriminant methods for modeling near infrared spectra
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-06-24T13:11:21Z
dc.journal.volume
251
dc.journal.pagination
1-7
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Fechner, Diana Corina. Universidad Nacional de Rio Negro. Centro de Investigaciones y Transferencia de Rio Negro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Rio Negro; Argentina
dc.description.fil
Fil: Martínez, Ramón Alberto. Universidad Nacional de Rio Negro. Centro de Investigaciones y Transferencia de Rio Negro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Rio Negro; Argentina
dc.description.fil
Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
dc.description.fil
Fil: Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil
dc.description.fil
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.journal.title
Chemometrics and Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169743924000960
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2024.105156
Archivos asociados