Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Geographic authentication of argentinian teas by combining one-class models and discriminant methods for modeling near infrared spectra

Fechner, Diana CorinaIcon ; Martínez, Ramón AlbertoIcon ; Hidalgo, Melisa JazminIcon ; Araújo Gomes, Adriano; Pellerano, Roberto GerardoIcon ; Goicoechea, Hector CasimiroIcon
Fecha de publicación: 08/2024
Editorial: Elsevier Science
Revista: Chemometrics and Intelligent Laboratory Systems
ISSN: 0169-7439
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

In this study, 110 tea samples from South American countries (Argentina, Brazil, and Paraguay) and Asian countries (India and China) were analyzed using near-infrared spectroscopy (NIRS) together with a two-step chemometric authentication strategy (class modeling techniques and discriminant analysis) to authenticate commercial teas from Argentina. In the first step, one-class models were built and validated to authenticate South American teas using preprocessed NIRS data. For this purpose, data-driven soft independent modeling of class analogy (DD-SIMCA) and one-class partial least squares (OC-PLS) were used. The DD-SIMCA model gave the best results, with a sensitivity of 93.10%, specificity of 100%, and efficiency of 95.00%. In the second step, a support vector machine (SVM) was used to build and validate a multiclass model to discriminate between tea samples from Argentina and neighboring countries of South America. The best model was the combination of nine variables selected by the fast correlation-based filter (FCBF) method, with an accuracy of 98.30%. Therefore, we conclude that the combination of NIRS and two-step chemometric tools can be used to authenticate the geographical origin of samples with high inter-class similarity.
Palabras clave: CLASSIFICATION , CERTIFICATION , NIR , SPECTROSCOPY
Ver el registro completo
 
Archivos asociados
Tamaño: 1.807Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/239026
URL: https://linkinghub.elsevier.com/retrieve/pii/S0169743924000960
DOI: http://dx.doi.org/10.1016/j.chemolab.2024.105156
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(IQUIBA-NEA)
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Fechner, Diana Corina; Martínez, Ramón Alberto; Hidalgo, Melisa Jazmin; Araújo Gomes, Adriano; Pellerano, Roberto Gerardo; et al.; Geographic authentication of argentinian teas by combining one-class models and discriminant methods for modeling near infrared spectra; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 251; 8-2024; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES