Mostrar el registro sencillo del ítem
dc.contributor.author
Molina, Romina Soledad
dc.contributor.author
Morales, Iván René
dc.contributor.author
Crespo, Maria Liz
dc.contributor.author
Gil Costa, Graciela Verónica
dc.contributor.author
Carrato, Sergio
dc.contributor.author
Ramponi, Giovanni
dc.date.available
2024-07-03T11:48:15Z
dc.date.issued
2023-12
dc.identifier.citation
Molina, Romina Soledad; Morales, Iván René; Crespo, Maria Liz; Gil Costa, Graciela Verónica; Carrato, Sergio; et al.; An End-to-End Workflow to Efficiently Compress and Deploy DNN Classifiers On SoC/FPGA; Institute of Electrical and Electronics Engineers; IEEE Embedded Systems Letters; 12-2023; 1-4
dc.identifier.issn
1943-0671
dc.identifier.uri
http://hdl.handle.net/11336/238874
dc.description.abstract
Machine learning models have demonstrated discriminativeand representative learning capabilities over a widerange of applications, even at the cost of high computationalcomplexity. Due to their parallel processing capabilities, reconfigurability,and low power consumption, Systems on Chip basedon a Field Programmable Gate Array (SoC/FPGA) have beenused to face this challenge. Nevertheless, SoC/FPGA devicesare resource-constrained, which implies the need for optimaluse of technology for the computation and storage operationsinvolved in ML-based inference. Consequently, mapping a DeepNeural Network (DNN) architecture to a SoC/FPGA requirescompression strategies to obtain a hardware design with agood compromise between effectiveness, memory footprint, andinference time. This paper presents an efficient end-to-endworkflow for deploying DNNs on an SoC/FPGA by integratinghyperparameter tuning through Bayesian optimization with anensemble of compression techniques.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FPGA
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An End-to-End Workflow to Efficiently Compress and Deploy DNN Classifiers On SoC/FPGA
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-07-02T11:03:50Z
dc.journal.pagination
1-4
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Molina, Romina Soledad. The Abdus Salam. International Centre for Theoretical Physics; Italia
dc.description.fil
Fil: Morales, Iván René. The Abdus Salam. International Centre for Theoretical Physics; Italia
dc.description.fil
Fil: Crespo, Maria Liz. The Abdus Salam. International Centre for Theoretical Physics; Italia
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
dc.description.fil
Fil: Carrato, Sergio. Università degli Studi di Trieste; Italia
dc.description.fil
Fil: Ramponi, Giovanni. Università degli Studi di Trieste; Italia
dc.journal.title
IEEE Embedded Systems Letters
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/LES.2023.3343030
Archivos asociados