Mostrar el registro sencillo del ítem

dc.contributor.author
Molina, Romina Soledad  
dc.contributor.author
Morales, Iván René  
dc.contributor.author
Crespo, Maria Liz  
dc.contributor.author
Gil Costa, Graciela Verónica  
dc.contributor.author
Carrato, Sergio  
dc.contributor.author
Ramponi, Giovanni  
dc.date.available
2024-07-03T11:48:15Z  
dc.date.issued
2023-12  
dc.identifier.citation
Molina, Romina Soledad; Morales, Iván René; Crespo, Maria Liz; Gil Costa, Graciela Verónica; Carrato, Sergio; et al.; An End-to-End Workflow to Efficiently Compress and Deploy DNN Classifiers On SoC/FPGA; Institute of Electrical and Electronics Engineers; IEEE Embedded Systems Letters; 12-2023; 1-4  
dc.identifier.issn
1943-0671  
dc.identifier.uri
http://hdl.handle.net/11336/238874  
dc.description.abstract
Machine learning models have demonstrated discriminativeand representative learning capabilities over a widerange of applications, even at the cost of high computationalcomplexity. Due to their parallel processing capabilities, reconfigurability,and low power consumption, Systems on Chip basedon a Field Programmable Gate Array (SoC/FPGA) have beenused to face this challenge. Nevertheless, SoC/FPGA devicesare resource-constrained, which implies the need for optimaluse of technology for the computation and storage operationsinvolved in ML-based inference. Consequently, mapping a DeepNeural Network (DNN) architecture to a SoC/FPGA requirescompression strategies to obtain a hardware design with agood compromise between effectiveness, memory footprint, andinference time. This paper presents an efficient end-to-endworkflow for deploying DNNs on an SoC/FPGA by integratinghyperparameter tuning through Bayesian optimization with anensemble of compression techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FPGA  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An End-to-End Workflow to Efficiently Compress and Deploy DNN Classifiers On SoC/FPGA  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-02T11:03:50Z  
dc.journal.pagination
1-4  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Molina, Romina Soledad. The Abdus Salam. International Centre for Theoretical Physics; Italia  
dc.description.fil
Fil: Morales, Iván René. The Abdus Salam. International Centre for Theoretical Physics; Italia  
dc.description.fil
Fil: Crespo, Maria Liz. The Abdus Salam. International Centre for Theoretical Physics; Italia  
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Carrato, Sergio. Università degli Studi di Trieste; Italia  
dc.description.fil
Fil: Ramponi, Giovanni. Università degli Studi di Trieste; Italia  
dc.journal.title
IEEE Embedded Systems Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/LES.2023.3343030