Artículo
An End-to-End Workflow to Efficiently Compress and Deploy DNN Classifiers On SoC/FPGA
Molina, Romina Soledad; Morales, Iván René; Crespo, Maria Liz; Gil Costa, Graciela Verónica
; Carrato, Sergio; Ramponi, Giovanni
Fecha de publicación:
12/2023
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Embedded Systems Letters
ISSN:
1943-0671
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Machine learning models have demonstrated discriminativeand representative learning capabilities over a widerange of applications, even at the cost of high computationalcomplexity. Due to their parallel processing capabilities, reconfigurability,and low power consumption, Systems on Chip basedon a Field Programmable Gate Array (SoC/FPGA) have beenused to face this challenge. Nevertheless, SoC/FPGA devicesare resource-constrained, which implies the need for optimaluse of technology for the computation and storage operationsinvolved in ML-based inference. Consequently, mapping a DeepNeural Network (DNN) architecture to a SoC/FPGA requirescompression strategies to obtain a hardware design with agood compromise between effectiveness, memory footprint, andinference time. This paper presents an efficient end-to-endworkflow for deploying DNNs on an SoC/FPGA by integratinghyperparameter tuning through Bayesian optimization with anensemble of compression techniques.
Palabras clave:
FPGA
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Molina, Romina Soledad; Morales, Iván René; Crespo, Maria Liz; Gil Costa, Graciela Verónica; Carrato, Sergio; et al.; An End-to-End Workflow to Efficiently Compress and Deploy DNN Classifiers On SoC/FPGA; Institute of Electrical and Electronics Engineers; IEEE Embedded Systems Letters; 12-2023; 1-4
Compartir
Altmétricas