Mostrar el registro sencillo del ítem
dc.contributor.author
Koplin, Eric Lionel
dc.contributor.author
Forzani, Liliana Maria
dc.contributor.author
Tomassi, Diego Rodolfo
dc.contributor.author
Pfeiffer, Ruth M.
dc.date.available
2024-06-13T13:35:25Z
dc.date.issued
2024-05
dc.identifier.citation
Koplin, Eric Lionel; Forzani, Liliana Maria; Tomassi, Diego Rodolfo; Pfeiffer, Ruth M.; Sufficient dimension reduction for a novel class of zero-inflated graphical models; Elsevier Science; Computational Statistics and Data Analysis; 196; 107959; 5-2024; 1-30
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/238073
dc.description.abstract
Graphical models allow modeling of complex dependencies among components of a random vector. In many applicationsof graphical models, however, for example microbiome data, the data have an excess number of zero values. Wepresent new pairwise graphical models with distributions in an exponential family, that accommodate excess numbersof zeros in the random vector components. First we characterise these multivariate distributions in terms of univariateconditional distributions. We then model predictors that arise from such a pairwise graphical model with excess zerosas a function of an outcome, and derive the corresponding first order sufficient dimension reduction (SDR). That is,we find linear combinations of the predictors that contain all the information for the regression of the outcome as afunction of the predictors. We estimate the SDR using pseudo-likelihood with a hierarchical penalty that accounts forthe graphical model structure, for variable selection, by allowing interactions only for variables that are associatedwith outcome also through main effects. This method yields consistent estimators of the reduction and can be appliedto continuous or categorical outcomes. We then illustrate our methods by studying normal, Poisson and truncatedPoisson graphical models with excess zeros in simulations and by analyzing microbiome data from the AmericanGut Project. Our models provided robust variable selection and the Poisson zero-inflation pairwise graphical modelresulted in predictive performance that was equal or better than that obtained from applying other available methodsfor the analysis of microbiome data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Count data, Hierarchical penalization, Hurdle model
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sufficient dimension reduction for a novel class of zero-inflated graphical models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-06-11T11:10:02Z
dc.journal.volume
196
dc.journal.number
107959
dc.journal.pagination
1-30
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Koplin, Eric Lionel. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Forzani, Liliana Maria. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pfeiffer, Ruth M.. National Cancer Institute; Estados Unidos
dc.journal.title
Computational Statistics and Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0167947324000434
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.csda.2024.107959
Archivos asociados