Mostrar el registro sencillo del ítem

dc.contributor.author
Koplin, Eric Lionel  
dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
Tomassi, Diego Rodolfo  
dc.contributor.author
Pfeiffer, Ruth M.  
dc.date.available
2024-06-13T13:35:25Z  
dc.date.issued
2024-05  
dc.identifier.citation
Koplin, Eric Lionel; Forzani, Liliana Maria; Tomassi, Diego Rodolfo; Pfeiffer, Ruth M.; Sufficient dimension reduction for a novel class of zero-inflated graphical models; Elsevier Science; Computational Statistics and Data Analysis; 196; 107959; 5-2024; 1-30  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/238073  
dc.description.abstract
Graphical models allow modeling of complex dependencies among components of a random vector. In many applicationsof graphical models, however, for example microbiome data, the data have an excess number of zero values. Wepresent new pairwise graphical models with distributions in an exponential family, that accommodate excess numbersof zeros in the random vector components. First we characterise these multivariate distributions in terms of univariateconditional distributions. We then model predictors that arise from such a pairwise graphical model with excess zerosas a function of an outcome, and derive the corresponding first order sufficient dimension reduction (SDR). That is,we find linear combinations of the predictors that contain all the information for the regression of the outcome as afunction of the predictors. We estimate the SDR using pseudo-likelihood with a hierarchical penalty that accounts forthe graphical model structure, for variable selection, by allowing interactions only for variables that are associatedwith outcome also through main effects. This method yields consistent estimators of the reduction and can be appliedto continuous or categorical outcomes. We then illustrate our methods by studying normal, Poisson and truncatedPoisson graphical models with excess zeros in simulations and by analyzing microbiome data from the AmericanGut Project. Our models provided robust variable selection and the Poisson zero-inflation pairwise graphical modelresulted in predictive performance that was equal or better than that obtained from applying other available methodsfor the analysis of microbiome data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Count data, Hierarchical penalization, Hurdle model  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sufficient dimension reduction for a novel class of zero-inflated graphical models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-06-11T11:10:02Z  
dc.journal.volume
196  
dc.journal.number
107959  
dc.journal.pagination
1-30  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Koplin, Eric Lionel. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Forzani, Liliana Maria. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pfeiffer, Ruth M.. National Cancer Institute; Estados Unidos  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0167947324000434  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.csda.2024.107959