Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sufficient dimension reduction for a novel class of zero-inflated graphical models

Koplin, Eric LionelIcon ; Forzani, Liliana MariaIcon ; Tomassi, Diego RodolfoIcon ; Pfeiffer, Ruth M.
Fecha de publicación: 05/2024
Editorial: Elsevier Science
Revista: Computational Statistics and Data Analysis
ISSN: 0167-9473
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

Graphical models allow modeling of complex dependencies among components of a random vector. In many applicationsof graphical models, however, for example microbiome data, the data have an excess number of zero values. Wepresent new pairwise graphical models with distributions in an exponential family, that accommodate excess numbersof zeros in the random vector components. First we characterise these multivariate distributions in terms of univariateconditional distributions. We then model predictors that arise from such a pairwise graphical model with excess zerosas a function of an outcome, and derive the corresponding first order sufficient dimension reduction (SDR). That is,we find linear combinations of the predictors that contain all the information for the regression of the outcome as afunction of the predictors. We estimate the SDR using pseudo-likelihood with a hierarchical penalty that accounts forthe graphical model structure, for variable selection, by allowing interactions only for variables that are associatedwith outcome also through main effects. This method yields consistent estimators of the reduction and can be appliedto continuous or categorical outcomes. We then illustrate our methods by studying normal, Poisson and truncatedPoisson graphical models with excess zeros in simulations and by analyzing microbiome data from the AmericanGut Project. Our models provided robust variable selection and the Poisson zero-inflation pairwise graphical modelresulted in predictive performance that was equal or better than that obtained from applying other available methodsfor the analysis of microbiome data.
Palabras clave: Count data, Hierarchical penalization, Hurdle model
Ver el registro completo
 
Archivos asociados
Tamaño: 2.361Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/238073
URL: https://www.sciencedirect.com/science/article/abs/pii/S0167947324000434
DOI: https://doi.org/10.1016/j.csda.2024.107959
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Koplin, Eric Lionel; Forzani, Liliana Maria; Tomassi, Diego Rodolfo; Pfeiffer, Ruth M.; Sufficient dimension reduction for a novel class of zero-inflated graphical models; Elsevier Science; Computational Statistics and Data Analysis; 196; 107959; 5-2024; 1-30
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES