Mostrar el registro sencillo del ítem
dc.contributor.author
Jia, Hao
dc.contributor.author
Han, Shuning
dc.contributor.author
Caiafa, César Federico

dc.contributor.author
Duan, Feng
dc.contributor.author
Zhang, Yu
dc.contributor.author
Sun, Zhe
dc.contributor.author
Solé Casals, Jordi
dc.date.available
2024-06-07T14:21:06Z
dc.date.issued
2024-07
dc.identifier.citation
Jia, Hao; Han, Shuning; Caiafa, César Federico; Duan, Feng; Zhang, Yu; et al.; Enabling temporal–spectral decoding in multi-class single-side upper limb classification; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 133; E; 7-2024; 108473, 1-12
dc.identifier.issn
0952-1976
dc.identifier.uri
http://hdl.handle.net/11336/237525
dc.description.abstract
This manuscript presents a novel approach for decoding pre-movement patterns from brain signals using a two-stage-training temporal–spectral neural network (TTSNet). The TTSNet employs a combination of filter bank task-related component analysis (FBTRCA) and convolutional neural network (CNN) techniques to enhance the classification of single-upper limb movements in non-invasive brain–computer interfaces (BCIs).In our previous work, we introduced the FBTRCA method which utilized filter banks and spatial filters to handle spectral and spatial information, respectively. However, we observed limitations in the temporal decoding phase, where correlation features failed to effectively utilize temporal information because of misaligned onset and noisy spikes. To address this issue, our proposed method focuses on analyzing multi-channel signals in the temporal–spectral domain. The TTSNet first divides the signals into various filter banks, employing task-related component analysis to reduce dimensionality and eliminate noise, respectively. Subsequently, a CNN is employed to optimize the temporal characteristics of the signals and extract class-related features. Finally, the class-related features from all filter banks are concatenated and classified using the fully connected layer.To evaluate the effectiveness of our proposed method, we conducted experiments on two publicly available datasets. In binary classification tasks, the TTSNet achieved an improved accuracy of 0.7707 ± 0.1168, surpassing the performance of EEGNet (accuracy: 0.7340 ± 0.1246) and FBTRCA (accuracy: 0.7487 ± 0.1250). In multi-class tasks, TTSNet achieved an accuracy of 0.4588 ± 0.0724, exhibiting a 4.27% and 3.95% accuracy increase over EEGNet and FBTRCA, respectively.The findings of this study suggest that the proposed TTSNet method holds promise for detecting limb movements and assisting in the rehabilitation of stroke patients. The classification of single-side limb movements is expected to facilitate the interaction between patients and external environment by increasing the number of control commands in BCIs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BCI
dc.subject
EEG
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Enabling temporal–spectral decoding in multi-class single-side upper limb classification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-30T10:20:20Z
dc.journal.volume
133
dc.journal.number
E
dc.journal.pagination
108473, 1-12
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Jia, Hao. Universidad de Vic - Universidad Centralde Cataluña (uvic - Ucc);
dc.description.fil
Fil: Han, Shuning. Universidad de Vic - Universidad Centralde Cataluña (uvic - Ucc);
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Duan, Feng. Nankai University; China
dc.description.fil
Fil: Zhang, Yu. Nankai University; China
dc.description.fil
Fil: Sun, Zhe. Riken. Lab. Adaptive Intelligence; Japón
dc.description.fil
Fil: Solé Casals, Jordi. Universidad de Vic - Universidad Centralde Cataluña (uvic - Ucc);
dc.journal.title
Engineering Applications Of Artificial Intelligence

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0952197624006316
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2024.108473
Archivos asociados