Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enabling temporal–spectral decoding in multi-class single-side upper limb classification

Jia, Hao; Han, Shuning; Caiafa, César FedericoIcon ; Duan, Feng; Zhang, Yu; Sun, Zhe; Solé Casals, Jordi
Fecha de publicación: 07/2024
Editorial: Pergamon-Elsevier Science Ltd
Revista: Engineering Applications Of Artificial Intelligence
ISSN: 0952-1976
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

This manuscript presents a novel approach for decoding pre-movement patterns from brain signals using a two-stage-training temporal–spectral neural network (TTSNet). The TTSNet employs a combination of filter bank task-related component analysis (FBTRCA) and convolutional neural network (CNN) techniques to enhance the classification of single-upper limb movements in non-invasive brain–computer interfaces (BCIs).In our previous work, we introduced the FBTRCA method which utilized filter banks and spatial filters to handle spectral and spatial information, respectively. However, we observed limitations in the temporal decoding phase, where correlation features failed to effectively utilize temporal information because of misaligned onset and noisy spikes. To address this issue, our proposed method focuses on analyzing multi-channel signals in the temporal–spectral domain. The TTSNet first divides the signals into various filter banks, employing task-related component analysis to reduce dimensionality and eliminate noise, respectively. Subsequently, a CNN is employed to optimize the temporal characteristics of the signals and extract class-related features. Finally, the class-related features from all filter banks are concatenated and classified using the fully connected layer.To evaluate the effectiveness of our proposed method, we conducted experiments on two publicly available datasets. In binary classification tasks, the TTSNet achieved an improved accuracy of 0.7707 ± 0.1168, surpassing the performance of EEGNet (accuracy: 0.7340 ± 0.1246) and FBTRCA (accuracy: 0.7487 ± 0.1250). In multi-class tasks, TTSNet achieved an accuracy of 0.4588 ± 0.0724, exhibiting a 4.27% and 3.95% accuracy increase over EEGNet and FBTRCA, respectively.The findings of this study suggest that the proposed TTSNet method holds promise for detecting limb movements and assisting in the rehabilitation of stroke patients. The classification of single-side limb movements is expected to facilitate the interaction between patients and external environment by increasing the number of control commands in BCIs.
Palabras clave: BCI , EEG
Ver el registro completo
 
Archivos asociados
Tamaño: 2.197Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/237525
URL: https://linkinghub.elsevier.com/retrieve/pii/S0952197624006316
DOI: http://dx.doi.org/10.1016/j.engappai.2024.108473
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Jia, Hao; Han, Shuning; Caiafa, César Federico; Duan, Feng; Zhang, Yu; et al.; Enabling temporal–spectral decoding in multi-class single-side upper limb classification; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 133; E; 7-2024; 108473, 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES